資料挖掘是在資料庫中找尋時常發生的既定規則,利用資料挖掘的技術,可以在大量的交易資料中挖掘出有趣的規則或是特性,這些規則或是特性可以提供我們做為決策參考之用。 以往在多屬性序列式資料的研究中,僅在挖掘具有連續性的序列樣式,對於不連續的序列樣式並無太多的論述。而本論文以LSS演算法為基礎,發展出適合多屬性序列式資料的DSS(Discontinuous Set of Sequence)演算法,並且改善了LSS演算法不能挖掘出不連續序列的特性。此演算法利用模糊集合的概念,將具有連續性的數值屬性轉換適合的語意,再利用DSS演算法的區間搜尋的方式,使得其不但可以找出連續性的序列樣式,也可以找出不連續的序列樣式,最後利用股市的資料來驗證此演算法的可行性。