中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/13370
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41279800      在线人数 : 29
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/13370


    题名: 以概念為維度之向量空間模型為基礎以進行文件分群之研究;Document clustering based on vector space model with concepts as the dimension value
    作者: 蘇千傑;Chien-chieh Su
    贡献者: 資訊管理研究所
    关键词: 知識管理;概念擷取;向量空間模型;文件分群;資訊檢索;knowledge management;concept extraction;vector space model;document clustering;information retrieval
    日期: 2007-07-09
    上传时间: 2009-09-22 15:30:11 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 在資訊檢索相關研究中,文件分群是用來令使用者能夠更加快速找到自己所需資訊的技術,利用分群的結構,我們可以有效的管理各種知識與資訊,它是一門知識管理的工具。 文件分群通常需要進行文件相似度比對,傳統上利用文章中的字彙當作向量空間模型的維度,此種方式,有一項弱點,即當兩篇文章在語意上相同,但用不同的字彙呈現時,會無法準確判斷文章間相似度而使文件分群困難。本研究結合了概念擷取與向量空間模式(Vector space model)兩種技術來協助文件分群,希望能夠以文章中所涵蓋的概念來代表文章,然後產生一個以概念為維度的向量空間模型,已進行文件相似度比對,希望能提高文件相似度比對的效能,進而使分群的效果更加完善。 我們進行了實驗來觀察使用概念為維度的向量空間模型,是否比傳統使用字彙為維度的向量空間模型,對於文件分群,具有更佳的效能,結果顯示使用概念為維度的向量空間模型,確實能夠幫助我們對文件作更準確的分群。 In Information Retrieval, document clustering is a technology that can enhance the efficiency in the retrieving of needed information. With document clustering, one can efficiently management all kinds of knowledge and information. Document clustering is a tool for knowledge management. Traditionally, document clustering is based on document similarity comparison where the document is represented by the vector space model with term as the dimension value. In this approach, the documents with the same semantic meaning might be classified as unsimilar because they are described with different words.In this research, we have integrated the technology of concept extraction with vector space model for document similarity comparison. We extract concepts from the documents first, then create a vector space model with the extracted concepts as the dimension value for the document. Documents similarity comparison is based on the concept-dimensioned vector space model. We wish that the concept based vector space model could enhance the document clustering efficiency. We have experimented with the document clustering effect for the concept based vector space modle. The results show that the concept based vector space model can perform better than term based vector space model.
    显示于类别:[資訊管理研究所] 博碩士論文

    文件中的档案:

    档案 大小格式浏览次数


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明