在電化學加工(Electrochemical Machining,簡稱ECM)過程中,產生的氣泡及熱量均會改變電解液的導電性質,而相關的熱流場參數,如壓力、溫度、流速等亦隨流場之形狀不同而有所變化,故欲準確地預測加工中各項參數的變化情形尚非易事。以往的研究分析中,皆只侷限在一維熱流場的模擬分析,但在加工區域變化較為劇烈時,電解液與氫氣的流動受到流場區域變化的影響,不再只是一維的現象,有必要以二維的熱流場模式加以分析。 本文嘗試以體適合法(Body-Fitted Method)產生格點,並以二維二相之不同速度同溫度模式,分析二維熱流效應,以了解電極間隙內,各項熱流參數諸如體積分率、流場、壓力及溫度等之分佈情形。並利用崁入法反求工具形狀,以加工出所欲得之工件形狀。以完整傅利葉級數擬合工件形狀,來降低相對誤差。 藉由本文之分析,結果顯示所預測之工件外形與Hopenfeld和 Cole所做的實驗值十分接近。而二維熱流效應在加工區域流場形狀變化很大時非常顯著,增加供給電解液之流量只能輕微的減輕其影響。若流場形狀變化不大時,二維熱流效應較小,可用一維熱流模式分析以節省計算時間。 Tool design in electrochemical machining is investigated which includes the effects of thermal-fluid properties of the electrolyte. A finite Fourier cosine series, constructed by both even and odd harmonics, is used in the electrode representation to reduce the relative error. A two-dimensional two-phase numerical model is applied to predict the thermal-fluid field. Results show that, as the curvature of the electrode shape varies seriously, the two-dimensional phenomenon of the flow is apparent and the two-dimensional model should be used in the numerical simulation. Larger flow rate of the electrolyte can lightly reduce the two-dimensional effects. As the curvature of the electrode shape varies mildly, one-dimensional analysis is accurate enough and capable to reduce the calculating time.