本研究為製作單晶矽層具有奈米等級的SOI材料,利用氫離子聚合為基礎的單晶矽層之薄膜轉移法已被普遍應用,但矽單晶薄膜於轉移後,會轉移層上形成一層損傷層,通常需要再進一步化學機械研磨(CMP)將此粉碎層移除。本研究目的主要利用蝕刻的方式,藉由特定蝕刻液,於特定溫度下,將以轉移後之SOI薄膜表層的粉碎層去除,同時達到表面平滑的效果,避免掉CMP程序。研究中以犧牲遮蔽層的沉積有效的改善氫離子佈植時通道效應的發生,減緩氫離子植入時穿透進矽基板的深度差,剝離後之SOI薄膜的表面粗糙度獲得改善。其後藉由將粉碎層移除,使得表面粗糙度更進一步地降低,完成矽單晶轉移薄膜層的表面平滑化。而由於犧牲遮蔽層的應用,解決因氫離子的物理極限導致100奈米以下薄膜厚度的控制的問題,研究中發展4”、8”以上之超薄SOI。研究另一主題則利用熱力微波方式有效的降低薄膜轉移溫度及時間,將轉移溫度降至200 ℃以下,研究中發現使用热力微波可以增加氫離子動能,並且幫助克服能階障礙。 本研究文末更進一步發展新一代薄膜轉移技術技術之先導研究,利用Si(B/Ge)結構為一捕捉氫離子層,而氫離子則改以常壓電漿進行低能量離子浸入,利用加熱過程中,氫離子會在矽晶圓進行擴散移動至Si(B/Ge)層,達到氫離子濃度聚集的效果,而由於氫離子在矽晶圓內150 ℃可以快速擴散並不會造成晶格的損傷,因此轉移後的薄膜保持良好的磊晶結構。擴散氫離子在特定深度被Si(B/Ge)捕捉後,經電漿氫化過後的試片馬上以電漿活化晶圓鍵合技術與另一石英晶圓鍵合在一起,最終成功的在低於200 °C下將單晶矽薄膜轉移至石英上。 This study explores the fabrication of large area nano-scale thin films without a CMP process. A sacrificial screening layer on the top surface of the substrate is formed first; this avoids the channeling effect and exactly defines the thickness of the desired transfer layer below 100 nanometers, overcoming the difficulty of a shallow implant depth due to the light mass of hydrogen ions in the Smart-CutR process. After the transfer layer process, a chemical etching technique is used to remove the region of hydrogen-filled voids on the top of the transfer layer, resulting in a smooth surface on the transferred layer without using a CMP process. This study also uses Thermal-microwave co-activation process to fabricating SOI. The hydrogen implanted silicon substrate is irradiated by microwave at 200 degree centigrade anneal temperature to successfully achieve a completely 4” and 8” transferred layer. The result of this experiment demonstrates Thermal-microwave co-activation effective to excite hydrogen ions implanted in silicon to increase not only kinetic energy but also mobility. At last, a diffusion-based hydrogen ion assisted layer transfer approach is developed to fabricate an epitaxial single-crystalline Si layer on a quartz wafer at a comparatively low temperature. A buried boron/germanium doped silicon, Si(B/Ge), layer was deposited to enhance the effect of hydrogen trapping and embrittlement to transfer the silicon cap layer by capturing hydrogen ions during plasma hydrogenation. The bonded to a quartz wafer and subsequently annealed for achieving a sufficiently high bonding strength. Layer transfer was then performed by initial microcrack generation at the interface after heating at 200 oC.