二十一世紀的今天,全世界正面臨著能源危機的問題,科學家們正在努力的尋找替代能源,期望能解決這個問題。其中,太陽能電池為最被看好的替代能源之一。本研究的目的為利用溶膠凝膠法製備奈米級二氧化鈦光電極,並分析染料敏化太陽能電池之效能。實驗的方法採用「溶膠凝膠法」,前驅物為金屬鹽類「四氯化鈦」,利用旋轉塗佈的方式製作出奈米級二氧化鈦薄膜,製備染料敏化太陽能電池之透明電極。溶膠凝膠法在加熱過程中,我們利用光強穿透率間接找出最佳的加熱時間,以DLS、XRD得知在加熱13個小時的TiO2粒子擁有最小的粒徑約35nm,且有銳鈦礦的結晶產生。染料敏化太陽能電池效率分析部份,我們採用三種方式製作透明光電極。兩組以Sol-Gel塗佈,一組以Sol-Gel混合商用P-25粉體,膜厚依序為:117.2 nm、459.4 nm、2 μm。結果顯示以Sol-Gel混合商用P-25粉體效率最高,且發現此方式可以很穩固的固定在基材上。 Today, in twenty-first century, the whole world currently faces the energy crisis and scientists are exerting themselves to solve it by seeking alternative energies. Among all the alternatives, the solar cell is the most promising one. The purpose of our research is to make solar electrode of nano-scale TiO2 (Titanium dioxide) by Sol-Gel method and to increase the efficiency of Dye-sensitized solar cell(DSSC). This processing used Titaniumchlorid (TiCl4) forerunner to manufacture TiO2 coating liquid. The spin coating method is taken to produce the nano-scale TiO2 thin film which can be used to make DSSC. During the heating process of Sol-Gel method, the transmittance of light intensity is utilized to find heating time which gives the best result. By measuring through DLS and XRD, we can have TiO2 particles whose size with an average of 35nm at a heating time of 13 hours and the crystallized anatase will be produced. For the analysis of efficiency of DSSC, three ways are adopted to fabricate transparent photoelectrodes while two methods are based on Sol-Gel spin coating and the other one mixes commercial P-25 power with Sol-Gel. The membrane thicknesses of three methods are 117.2nm, 459.4nm and 2um, respectively. The result demonstrates that the Sol-Gel mixed with commercial P-25 powder having the highest efficiency and can be firmly attached to the base material.