This study employed large unilamillar vesicles composed of purchased stratum corneum lipids to investigate the binding/partition of amino acids/dipeptides to stratum corneum lipid vesicles. The partition coefficients of amino acids/dipeptides between the stratum corneum lipid vesicles and the acetate buffer were determined by HPLC. In addition, the binding/partition enthalpy of amino acids/dipeptides with the stratum corneum lipid vesicles was derived by directly measuring the binding/partition heat with isothermal titration calorimetry. According to the binding/partition Gibbs free energy and the binding/partition enthalpy, all the binding/partition of amino acids/dipeptides with the stratum corneum lipid vesicles is endothermic, implying an entropy-driven binding/partition. Also, the equilibrium binding/partition results demonstrate that the partition coefficients of amino acids/dipeptides do not correlate with the transdermal permeability. This finding suggests that either the interaction between the penetrants and the lipid bilayer between corneocytes may not be a determining step or that the paracellular path is not a dominant route of transdermal penetration. (C) 1998 Elsevier Science B.V.