中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/26843
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41245045      Online Users : 846
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/26843


    Title: Data analysis using a combination of independent component analysis and empirical mode decomposition
    Authors: Lin,SL;Tung,PC;Huang,NE
    Contributors: 機械工程研究所
    Keywords: NONSTATIONARY TIME-SERIES;BLIND SEPARATION;ALGORITHM
    Date: 2009
    Issue Date: 2010-06-29 18:01:31 (UTC+8)
    Publisher: 中央大學
    Abstract: A combination of independent component analysis and empirical mode decomposition (ICA-EMD) is proposed in this paper to analyze low signal-to-noise ratio data. The advantages of ICA-EMD combination are these: ICA needs few sensory clues to separate the original source from unwanted noise and EMD can effectively separate the data into its constituting parts. The case studies reported here involve original sources contaminated by white Gaussian noise. The simulation results show that the ICA-EMD combination is an effective data analysis tool.
    Relation: PHYSICAL REVIEW E
    Appears in Collections:[Graduate Institute of Mechanical Engineering] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML872View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明