中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/27037
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41269639      Online Users : 251
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/27037


    Title: Experimental observation of interface shapes in the float zone of lithium niobate during a CO2 laser melting
    Authors: Hu,C;Chen,JC
    Contributors: 機械工程學系
    Keywords: THERMOCAPILLARY CONVECTION;CRYSTAL;GROWTH
    Date: 1996
    Issue Date: 2010-06-29 18:06:09 (UTC+8)
    Publisher: 中央大學
    Abstract: The radiosity from a rod of lithium niobate that was heated uniformly by a CO2 laser with an axisymmetric ring-shaped beam was measured by a two-dimensional infrared imaging radiometer with bandpass filters chosen to be 3-5, 8-12, and 10.6 mu m. The radiative characteristics of the volumetric emission and the significant difference of the emitted thermal radiation between the solid or melt and background for wavelengths of 3-5 mu m was used to determine the interface shapes of the float zone during the CO2 laser melting process. The trend of the power distribution impinging on the rod surface may be deduced from the reflection of the CO2 laser. The gas bubbles existing in the melt may also be monitored. The surface temperature was determined from the distribution of the radiosity for wavelengths of 8-12 mu m. The surface temperature distribution is modified significantly be thermocapillary convection. With an increase of the input power, the gas-melt interface changes from concave towards the melt to convex at the upper zone and concave at the lower zone due to the effect of gravity. Copyright (C) 1996 Elsevier Science Ltd.
    Relation: INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
    Appears in Collections:[Graduate Institute of Mechanical Engineering] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML470View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明