中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/27757
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41250590      線上人數 : 333
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27757


    題名: Expression and function of proton-sensing G-protein-coupled receptors in inflammatory pain
    作者: Chen,YJ;Huang,CW;Lin,CS;Chang,WH;Sun,WH
    貢獻者: 生命科學研究所
    關鍵詞: KINASE-C-EPSILON;CAPSAICIN RECEPTOR;SENSORY NEURONS;VANILLOID RECEPTOR-1;TISSUE ACIDOSIS;INTRADERMAL INJECTION;MICE DEFICIENT;ION CHANNELS;HYPERALGESIA;RAT
    日期: 2009
    上傳時間: 2010-06-29 19:28:55 (UTC+8)
    出版者: 中央大學
    摘要: Background: Chronic inflammatory pain, when not effectively treated, is a costly health problem and has a harmful effect on all aspects of health-related quality of life. Despite the availability of pharmacologic treatments, chronic inflammatory pain remains inadequately treated. Understanding the nociceptive signaling pathways of such pain is therefore important in developing long-acting treatments with limited side effects. High local proton concentrations (tissue acidosis) causing direct excitation or modulation of nociceptive sensory neurons by proton-sensing receptors are responsible for pain in some inflammatory pain conditions. We previously found that all four proton-sensing G-protein-coupled receptors (GPCRs) are expressed in pain-relevant loci (dorsal root ganglia, DRG), which suggests their possible involvement in nociception, but their functions in pain remain unclear. Results: In this study, we first demonstrated differential change in expression of proton-sensing GPCRs in peripheral inflammation induced by the inflammatory agents capsaicin, carrageenan, and complete Freund's adjuvant (CFA). In particular, the expression of TDAG8, one proton-sensing GPCR, was increased 24 hours after CFA injection because of increased number of DRG neurons expressing TDAG8. The number of DRG neurons expressing both TDAG8 and transient receptor potential vanilloid 1 (TRPV1) was increased as well. Further studies revealed that TDAG8 activation sensitized the TRPV1 response to capsaicin, suggesting that TDAG8 could be involved in CFA-induced chronic inflammatory pain through regulation of TRPV1 function. Conclusion: Each subtype of the OGR1 family was expressed differently, which may reflect differences between models in duration and magnitude of hyperalgesia. Given that TDAG8 and TRPV1 expression increased after CFA-induced inflammation and that TDAG8 activation can lead to TRPV1 sensitization, it suggests that high concentrations of protons after inflammation may not only directly activate proton-sensing ion channels (such as TRPV1) to cause pain but also act on proton-sensing GPCRs to regulate the development of hyperalgesia.
    關聯: MOLECULAR PAIN
    顯示於類別:[生命科學研究所 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML850檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明