中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/28173
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41252153      線上人數 : 531
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/28173


    題名: Two-stage optimization of lens grinding parameters for multi-quality target combining Taguchi method and neural network software
    作者: Chang,RS;Chiang,DR;Wang,SW;Lin,CH
    貢獻者: 光電科學研究所
    日期: 2009
    上傳時間: 2010-06-29 19:42:57 (UTC+8)
    出版者: 中央大學
    摘要: In this paper we present an efficient two-stage method combining the merits of the Taguchi method and neural network software to achieve nonlinear fine optimal lens grinding parameters for both the roughness and the curvature deviation robust over a wide range of lens refraction power. Discrete and rough optimal grinding parameters for roughness and for curvature deviation are first obtained respectively using the Taguchi method with an L-18 orthogonal array. Then all the experimental data of the 18 experiments are used as input training data for neural network software to obtain a set of compromised nonlinear accurate optimal parameters for the roughness and the curvature deviation. Results of confirmation experiments using these final parameters show that lens surfaces ground with polishers ranging in curvature from -7:00 to +7.00D are robust in desired quality targets.
    關聯: OPTICAL REVIEW
    顯示於類別:[光電科學研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML740檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明