English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41244952      線上人數 : 796
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/29137


    題名: A genetic algorithm for MRF-based segmentation of multi-spectral textured images
    作者: Tseng,DC;Lai,CC
    貢獻者: 資訊工程研究所
    關鍵詞: MARKOV RANDOM-FIELD;UNSUPERVISED SEGMENTATION;COLOR IMAGES;CLASSIFICATION;RELAXATION;MODELS
    日期: 1999
    上傳時間: 2010-06-29 20:14:36 (UTC+8)
    出版者: 中央大學
    摘要: A segmentation approach based on a Markov random field (MRF) model is an iterative algorithm; it needs many iteration steps to approximate a near optimal solution or gets a non-suitable solution with a few iteration steps. Tn this paper, we use a genetic algorithm (GA) to improve an unsupervised MRF-based segmentation approach for multispectral textured images. The proposed hybrid approach has the advantage that combines the fast convergence of the MRF-based iterative algorithm and the powerful global exploration of the GA. In experiments, synthesized color textured images and multi-spectral remote-sensing images were processed by the proposed approach to evaluate the segmentation performance. The experimental results reveal that the proposed approach really improves the MRF-based segmentation for the multi-spectral textured images. (C) 1999 Elsevier Science B.V. All rights reserved.
    關聯: PATTERN RECOGNITION LETTERS
    顯示於類別:[Graduate Institute of Computer Science and Information Engineering] journal & Dissertation

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML437檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明