中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/29150
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41245699      在线人数 : 145
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/29150


    题名: Fault-free Hamiltonian cycles in faulty arrangement graphs
    作者: Hsieh,SY;Chen,GH;Ho,CW
    贡献者: 資訊工程研究所
    关键词: HYPERCUBES;NETWORKS;DEBRUIJN;MESHES;RINGS;TREES
    日期: 1999
    上传时间: 2010-06-29 20:14:55 (UTC+8)
    出版者: 中央大學
    摘要: The arrangement graph A(n,k), which is a generalization bf the star graph (n - k = 1), presents more flexibility than the star graph in adjusting the major design parameters: number of nodes, degree, and diameter. Previously, the arrangement graph has proved Hamiltonian. In this paper, we further show that the arrangement graph remains Hamiltonian even ii it is faulty. Let \F-e\ and \F-v\ denote the numbers of edge faults and vertex faults, respectively. We show that A(n,k) is Hamiltonian when 1) (k = 2 and n - k greater than or equal to 4, or k greater than or equal to 3 and n - k greater than or equal to 4 + inverted right perpendicular k/2 inverted left perpendicular), and \F-e\ less than or equal to k(n - k) - 2, or 2) k greater than or equal to 2, n - k greater than or equal to 2 + inverted right perpendicular k/2 inverted left perpendicular, and \F-e\ less than or equal to k(n - k - 3) - 1, or 3) k greater than or equal to 2, n - k greater than or equal to 3, and \F-e\ less than or equal to k, or 4) n - k greater than or equal to 3 and \F-v\ less than or equal to n - 3, or 5) n - k greater than or equal to 3 and \F-v\ + \F-e\ less than or equal to k. Besides, for A(n,k) with n - k = 2, we construct a cycle of length at least 1) n!/(n-k)! - 2 if \F-e\ less than or equal to k - 1, or 2) n!/(n-k)! - \F-v\ - 2(k -1) if \F-v\ less than or equal to k - 1, or 3) n!/(n-k)! - \F-v\ - 2(k - 1) if \F-e\ + \F-v\ less than or equal to k - 1, where nl/(n-k)l is the number of nodes in A(n,k).
    關聯: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
    显示于类别:[資訊工程研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML475检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明