Recently, there has been an increasing interest in improving the reliability and quality of Al systems. As a result, a number of approaches to knowledge-based systems modeling have been proposed. However, these approaches are limited in formally verifying the intended functionality and behavior of a knowledge-based system. In this article, we proposed a formal treatment to task structures to formally specify and verify knowledge-based systems modeled using these structures. The specification of a knowledge-based system modeled using task structures has two components: a model specification that describes static properties of the system, and a process specification that characterizes dynamic properties of the system. The static properties of a system are described by two models: a model about domain objects (domain model), and a model about the problem-solving states (state model). The dynamic properties of the system are characterized by (1) using the notion of state transition to explicitly describe what the functionality of a task is, and (2) specifying the sequence of tasks and interactions between tasks (i.e., behavior of a system) using task state expressions (TSE). The task structure extended with the proposed formalism not only provides a basis for detailed functional decomposition with procedure abstraction embedded in, but also facilitates the verification of the intended functionality and behavior of a knowledge-based system. (C) 1997 John Wiley gr Sons, Inc.