English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41244983      線上人數 : 827
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/29222


    題名: BIPARTITE WEIGHTED MATCHING FOR ONLINE HANDWRITTEN CHINESE CHARACTER-RECOGNITION
    作者: HSIEH,AJ;FAN,KC;FAN,TI
    貢獻者: 資訊工程研究所
    關鍵詞: RELAXATION
    日期: 1995
    上傳時間: 2010-06-29 20:16:46 (UTC+8)
    出版者: 中央大學
    摘要: The matching of line segments between input and prototype characters can be formulated as bipartite weighted matching problem. Under the assumption that the distance of the two line segments and the unmatched penalty of any line segment are given, the matching goal is to find a matching such that the sum of the weights of matching edges and the penalties of unmatched vertices is minimum. In this paper, the Hungarian method is applied to solve the matching problem by a reduction algorithm. Moreover, a greedy algorithm based on the Hungarian method is proposed by restricting the above matching which satisfies the constraints of geometric relation. For each iteration in the greedy algorithm, a matched pair is deleted if the relation of their neighbors does not match and a new matching is then found by applying Hungarian method. Finally, we can find a stable matching that preserves the geometric relation. We have implemented this method to recognize on-line Chinese handwritten characters permitting both stroke-order variation and stroke-number variation and a 91% recognition rate is attained.
    關聯: PATTERN RECOGNITION
    顯示於類別:[資訊工程研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML520檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明