一般來說,人們隨著年齡的增長在椎間盤裡的髓核就會開始退化,造成椎間盤的厚度減少,進而造成黃韌帶及小面關節的肥大,以致於引發壓迫到神經,造成椎間盤退化性疾病(DDD: Degenerative Disc Disease),而解決此種症狀的方法手術中使用穿椎弓足固定器、骨融合術與人工椎間盤來恢復塌陷椎間盤之原有高度,進而解決椎間盤退化的問題。 本研究為利用SolidWorks建立腰椎模型與動靜態內固定器,先將腰椎模型加入肌肉群力,使分析更接近真實狀態,再透過COSMOSWorks有限元素軟體分析四種不同腰椎模型:正常腰椎、腰椎植入鈦合金靜固定器、腰椎植入Dynesys固定器與腰椎植入動態固定器這四種模型來進行有限元素分析。主要模擬分析腰椎模型椎間盤高度與角度變化、髓核應力、椎弓足應力,所產生的應力分佈情形,以及固定器受力後呈現之應力集中狀態,探討其可能破壞斷裂處並與文獻做比較,了解動靜態內固定器對腰椎周圍醫學組織之生物力學影響。 Generally speaking, people’s inside the nucleus in the disc will begin to degradation with the growth of age, then resulting the reduction of the thickness to disc, and the hypertrophy in the ligamentum flavum and facet joint. It will lead to oppression in the nerve, resulting in degradation of disc disease(DDD: Degenerative Disc Disease). The Solving methods for these symptoms is using transpedicular fixation, bone fusion and artificial disc to restore the collapse of the original disc height, and then solve the problem of disc degeneration. The purpose of this study uses the SolidWorks software to establish the lunbar models and dynamic and static lumbar fixation. First, we add the lumbar muscle groups on the lumbar to be muscle forces model in order to let the analysis be closer to the true state. And then through COSMOSWorks finite element analysis software analyzing four different lumbar spine model. It contains four kinds of finite element analysis models that be normal lumbar spine, static titanium fixation device on the lumbar spine, Dynesys dynamic fixation device on the lumbar spine, and DSJF dynamic fixation device on spine. The simulation analysis main discuss the changing of intervertebral disc height, intervertebral disc angles, nucleus stress, pedicle stress and fixators stress for lumbar models. It also must investigate the stress distribution and stress concentration of lumbar models after implanted the fixators. Then we investigate the possible rupture position and compared with the literature to understand the dynamic and static fixation of the lumbar spine medical organizations around the biomechanics of impact.