中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/43483
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41255545      Online Users : 129
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/43483


    Title: 超音波飛行時間創新的量測方法;--使用不同頻率波峰序列 An Innovative Ultrasonic Time-of-Flight Measurement Method Using Peak Time Sequences of Different Frequencies
    Authors: 楊啟明;Chi-ming Yang
    Contributors: 機械工程研究所
    Keywords: 超音波;距離量測;非接觸量測;Acoustic distance measurement;Acoustic measurements;Acoustic applications;Acoustics;Acoustic devices
    Date: 2010-06-21
    Issue Date: 2010-12-08 13:42:07 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本文為改良基於過門檻時間的Time of Flight(T-O-F)量測方式。這個方法綜合T-O-F以及相位差量測之優點,同時具備長距離量測以及高精度量測之優點,本文有以下數點創新:1.使用多次跨門檻時點資料整理出到達時間資訊。2.用不同頻率之超音波之多次跨門檻時間,推算峰谷到達時間差,其以時間差之變動反推第一波到達時間。 本文同時提供用來實現雙頻率超音波峰谷到達時間測量的具體電路介紹。為實測用於量測距離的創新雙頻超音波測矩電路,我們也設置完成PC-BASED測試平台,此一測試平台在文中我們會一併介紹。運用這一個測試平台,我們完成了最少需求發射波數研究實驗、 可用穩態接收波段研究實驗、最小雙頻間隔時間研究實驗、間矩與介質微變異影響與反制研究實驗、以及最終的雙頻超音波測矩實驗。實驗的結果不但驗證了雙頻峰谷到達時差量測距離可行,同時在1450mm的測試距離內,使用波長8.6mm的超音波,實驗的標準差也達到0.097mm精度。由實驗結果,我們建立了一個使用雙頻超音波來測距條件參數表格,希望能有益於有興趣使用這種方法量測矩離的朋友。本研究所提出之測矩電路,僅用到微控制器,數位邏輯電路以及簡單功率放大電子元件,無需ADC等成本高之電路元件,不僅成本上具有優勢,且很容易IC化。 This paper proposes an innovative distance measurement method based on the time of flight (TOF) of ultrasound. By introducing received ultrasonic wave peak time sequences (PTS) of two slightly different frequencies, the relative distance can be accurately identified with resolution much better than a wavelength. The new PTS distance measurement is achieved in two steps. Firstly, a peak time sequence is built for received ultrasound signal of each frequency according to the arrival time of the wave peaks by calculating the mean value of the adjacent crossover time. Secondly, the arrival time of the wave front is rebuilt by estimating the common initiation time of the peak time sequences for the received waves of slightly different frequencies. A mathematical model is derived to describe the signal reception, from which the TOF estimation algorithm was derived. A simulation model describing the characteristics of the ultrasonic transducer and the ultrasonic wave propagation physics is developed to verify the new algorithm. An experimental system was implemented to confirm the feasibility. A PC-based test bench was built to test the characteristics. The characteristics of the transient behavior of the PTS were studied to determine the implementation parameters. Obtaining the PTS by averaging repeated tests was found to be effective in enhancing the precision, as well as the robustness, of the algorithm. In a TOF measurement over the distance of 145cm , a STD of 0.0113 of a period was achieved by a nominal driving wave period of 25.6us (39KHz) and frequency difference factor of 0.0048. When applied to distance measurement, the worst STD of 0.097mm was achieved with a relative distance ranging up to 1450mm, given the nominal driving wavelength of 8.6mm. This new dual frequencies PTS based TOF measurement system can be economically embedded in a micro controller together with floating point gate array (FPGA), and some simple transistors suitable for positioning mobile units indoors or in small open field environments.
    Appears in Collections:[Graduate Institute of Mechanical Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML617View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明