本文討論太陽能電池(solar cells)表面粗化(surface texture)對光進入電池後的吸收路徑的影響。 其中,本研究使用奈米小球微影法(Nano-sphere Lithography)在單晶矽基板上以電漿蝕刻的方式蝕刻出奈米晶柱結構,接著再利用離子源(Ion source)轟擊晶柱結構,藉以改變其表面形貌,並利用濺鍍(Sputter)系統在奈米晶柱表面濺鍍上一層抗反射膜,降低表面反射率增加光通量有助於改善光的吸收路徑,最後再討論不同的奈米晶柱寬度對光學特性的影響。量測分析上利用量測基板的反射率、穿透率,以及散射量討論不同表面形貌或是不同寬度結構的影響,並以計算其霧化程度(Haze parameter)做為分析的主要方法,結構表面反射率低可減少光因反射造成的損耗,霧化程度越高則代表光進入太陽能電池後的光吸收路徑越大。 實驗結果發現額外用離子蝕刻對奈米晶柱使晶柱頂端呈現奶嘴狀時霧化程度增加的最多,而GZO抗反射膜可使表面反射率降低約20%,且在不同角度下都擁有低反射率的優點。最後以鋪排粒徑為300 nm的奈米小球,形成寬度為337 nm 的奈米晶柱有最好的散射效率。 In this research, we discussed the influence of the absorption light path length entering the solar cells by the surface texture on the silicon solar cells. On the single crystalline silicon wafer, this research used nano-sphere lithography by plasma etching to construct the nano-cylinders structure. After that, we used the ion source to bombard the nano-cylinders in order to alter the surface topography and also used the sputtering system to sputter a layer of AR-coating on the surface. This AR-coating can decrease the surface reflectance which results in the increasing luminous flux that improves the absorption path length of light. Finally, we discussed the impact on the optical properties by changing the width of structures. It can be discussed the effects of the surface topography or the different width structures by measuring the reflectance, transmittance, and the scattering of the nano-cylinders. Low reflectivity can decrease the loss that caused by the reflection. And, the haze parameter is proportional to the absorption path length of light entering the solar cells. Experimental results showed the highest haze parameter from the pacifier shape at the top of nano-cylinders by additional ion etching. Then, the GZO AR-coating on nano-cylinders can decrease surface reflection about 20%, and the nano-cylinders have low reflection at different angle. Finally, the nano-cylinders of 337 nm in width forming from the nano-spheres of 300 nm in diameter show the best result.