English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41248087      線上人數 : 209
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/45492


    題名: 以粒子群法為基礎之新型高階混合式演化法的發展與其在結構最佳化設計問題之應用;Development of New Pso-Based Hybrid Searching Algorithms and Their Applications in Structural Optimization
    作者: 莊德興
    貢獻者: 土木工程學系
    關鍵詞: 混合型搜尋法;粒子群法;新型粒子群法;差分演化法;結構最佳化設計;連續變數;離散變數;混合變數;土木水利工程類
    日期: 2008-07-01
    上傳時間: 2010-12-28 14:27:57 (UTC+8)
    出版者: 行政院國家科學委員會
    摘要: 本計畫主要目的在提出兩個以粒子群法(Particle Swarm Optimization method, PSO) 為基礎之新型高階啟髮式混合演化法,期可有效地搜尋複雜、多極值之非線性最佳化問題的全域解,並應用於求解結構最佳化設計問題。PSO 是Kennedy 和Eberhat 於1995 年所提出的一種高階啟髮式演算法(metaheuristic algorithms),可以進行全域搜尋,然而過去許多研究結果顯示,PSO 的移動速度會隨迭代次數的增加而趨緩的現象,因而逐漸失去群體中粒子的多樣性(diversity)形成早熟現象(premature)。為了解決這個缺失,故本研究計畫提出兩種新型的混合搜尋法HNPSO 和PSODE。HNPSO 是將PSO 和一種以逆向思考方式形成的New PSO (NPSO)結合運用,搜尋最佳解時,先將初始粒子群以隨機方式分成兩個子族群,分別以PSO 和NPSO 進行速度與位置更新,並透過兩個子族群間訊息的傳遞與交換,來達到維持粒子群多樣性的目的,使搜尋到全域解的機率可以增加。PSODE 則是結合PSO 和差分演化法(Differential Evolution,DE)所形成之混合型演化法,搜尋策略與HNPSO 類似,先將群體分成兩個子群,分別以PSO 和DE 進行演化,並透過兩個子族群間訊息的傳遞與交換,來達到維持粒子群多樣性的目的。研究中,考慮到單一個體可能發生搜尋停滯的現象,故將導入突變機制來改善。兩種高階混合啟髮式演化法將應用於連續、離散和混合變數之結構最佳化設計問題,並規劃兩年時間來完成本計劃。 研究期間:9608 ~ 9707
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[土木工程學系 ] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML508檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明