在奈微米製程越來越成熟的環境下,石英晶圓所佔的比例還是遠小於矽晶圓的比重,不過因石英晶體其材料與物理特性上有其他材料無法超越的優良特徵,故在半導體製程鏈與微機電系統製程上的應用,漸漸比重越來越大。而石英的等向性蝕刻(isotropic etching)與非等向性蝕刻(anisotropic etching)的技術製程,也隨著需求尺寸的縮小而逐漸受到重視與普及。而蝕刻也是必須且重要性的一環製程步驟,在半導體製程中經由塗佈得到薄膜,再逐步逐層的經由沉積、顯影後,就是進行乾式蝕刻(Dry Etching)或是濕式蝕刻(Wet Etching)進而將晶圓,蝕刻成所需求的結構切向與角度,依照微結構、微感測器、微傳感器等不同需求的元組件,進行後段的鍵合與封裝製程後,即可完成半導體的元件。本篇論文研究將以二氟化氫銨NH4HF2 (Ammonium Bifluoride)為主要蝕刻液,並以飽和濃度(saturated)與55℃下進行石英晶片的非等性向性蝕刻,配合不同的光罩圖形設計透過掃描式電子顯微鏡(scanning electron microscope , SEM)去觀察各溝槽的蝕刻切面與不同結構的發展情形,進可得知非等向性相關蝕刻資訊。而單一結構切向面是以往常見的應用結構,而本論文研究主要想在單一晶向的石英晶圓上,經蝕刻製程得到不同晶向切面的結構,而為了達到預測不同切向結構與蝕刻前後的形狀改變,材料晶格特性的選用及蝕刻特性的參數也就越顯重要,非等向性的蝕刻就是利用各個晶格的特殊切面或非自然晶格面其不同的蝕刻速率,配合上光罩圖形的設計作為預測與觀察蝕刻後的微結構,並透過二維與三維的觀察紀錄詳細瞭解到各特殊面的蝕刻速率,以其造成不同方位的交錯與結構面發展情形,得知二維與三維蝕刻率相關數據資料,用以建立石英晶圓的蝕刻速率資料庫並利用其改良與模擬未知的二維與三維蝕刻斜面結構、長時間與大深度的微結構面變化情形,藉由蝕刻得到所需的特殊結構面,並使這些特殊結構面的機械、電子、光學特性,得以在未來石英晶體的應用上有著更加寬廣的應用與結合。 It’s had to come to maturity in micromechanics and microengineering, but the proportion of quartz wafer is less than silicon wafer in use. It’s gradually increasing the proportion of quartz wafer, cause the physical properties and characteristics of its materials better than others. It’s attaches great importance to isotropic etching and anisotropic etching of quartz, advances in technology make the size of various components is gradually shrinking. Etching is the most important process in MEMS and Semiconductor Manufacturing; through the spin coating we get the thin film and deposition, developed then wet(dry) etching the microstructure to get the microsensor, microtransducer in order to complete the semiconductor components. We used a NH4HF2(ammonium bifluoride)saturated solution as an etchant in this paper and the etching temperature were selected with 55°C. The microstructure formation of image was take by SEM (scanning electron microscope), it can get more information about the anisotropic etching rate through various patterns in mask. It’s common to see the single cut of structure; otherwise we think about that use etching progress to get complex cut structure of quartz in this research, and the picking of crystal characteristic is the main point. The anisotropic etching which means that the etch rate is dependant on the crystal orientation, the structure development independently of the initial shape’s design of the etch mask. Experiments obtain more etch rate of specific crystal plane by observation two and three dimensional image of structure. Finally we can construct the database of etching rate for simulation the quartz structure, improve the defects to acquire the accurate etching data and forecast three dimensional structures. By etching get the special structure of quartz, and that these special surface structure. The mechanical, electronic, optical properties, to be in the future the application of quartz crystal have a broader application and integration.