本論文係研究正向系統之穩定性分析及穩定化控制設計,研究的範疇包含連續時間與離散時間兩大系統,系統中含有的區間跟凸形不確定量因子,是本文的主要探討之列。針對穩定性與正向性分析問題,而推導出新的充份與必要條件,基於此條件,搭配狀態迴授來設計控制器,便可應用於控制系統的穩定化設計上。利用前述之分析結果,配合線性歸劃方法來尋找控制器參數。最後以實際的正向系統為例,對此系統設計控制器,討論補償前與補償後系統性能的差異,經由模擬結果顯示,所設計的控制器是有效且適用的。 This thesis is concerned with stability and stabilization of interval and polytopic systems with the positivity constraints. Both continuous-time and discrete-time are discussed. For stability analysis and stabilization problems of those systems, we derive some new conditions. Then based on these conditions, a linear programming method is applied to design controllers. Several examples, including compartmental systems and Leslie systems are given to demonstrate the effectiveness and applicability of the proposed methods.