本文主要依據Fukuta-Saxena (1979)所設計及規範之雲凝結核譜儀的原則,完成實際儀器的建構和測試。建構所使用的裝配,主要是在於後方採樣裝置及計數器的部分,使用了較新型的配備加以改良,由以往紙張繪出量得數目改成了由電腦完成的數位存取。在儀器的測試上,分別完成了後方採樣管線損失的研究及設定面板溫度達預設溫度至少所需的時間研究。另外以室內及室外的實際採樣,利用變化流率使其能產生最大活化水滴數目結果,來選擇適合的流率,更進一步確認測試儀器本身定性上的吻合。 後方採樣管線的損失測試,在不同的兩個偵測粒徑上所得累加數目,並未發現因採樣管彎曲的不同程度,而有明顯不同的數目損失。吾人估算達到上板面板的預設溫度所需的時間約為30分鐘。另外,對不同流率所產生的活化水滴數目,在所完成的四次觀測中,發現最大的活化水滴數目,均超過100 cm3 s-1。選定流率後,同時可決定出所需濾紙的長度。最後測試室內外空氣樣本的活化情形,結果發現誤差發生在較低的過飽和度上,此與Fukuta-Saxena所推論離熱導牆的前6公分處有大於5%的絕對誤差,有一致的表現。 Based on the design guidelines of the cloud condensation nuclei (CCN) counter made by Fukuta-Saxena (1979), this study is aimed to rebuild the same counter and improve it.A new particle counting device with LCD display is deployed at the end of the CCN chamber. The CCN spectrum is recorded in computer, instead of the previous design with a graphic display. Besides, the loss of particle counting due to the configuration sampling tube is studied.Time request for preheating of the chamber is also discussed. . Optimization of the flow rate of the chamber with respect to the activated particle number concentrations is investigated. Indoor and outdoor air flows were sampled to test the CCN counter. The results were consistent with Fukuta-Saxena's.