A one-dimensional sea ice-ocean model with its application in the Arctic Ocean is presented. The model includes a mixed-layer ocean model, a multi-layer snow/ice model, and the interfaces among atmosphere, snow/sea ice, and sea water. The observational data from the measurements at the ice station of the Surface Heat Budget of the Arctic Ocean (SHEBA) field experiment between November 1997 and January 1998 were used to drive and validate the model. The energy budget of the stand-alone simulations shows that the longwave radiative cooling is mainly balanced by the heat released of freezing at the bottom of the sea-ice. The results also show that the effect of ventilation and blowing snow are required to reproduce the detailed observed surface temperature, thickness of the sea ice, sensible heat flux and upward longwave radiation.