English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41279262      線上人數 : 86
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/50331


    題名: Profiles of the atmospheric temperature response to the Saharan dust outbreaks derived from FORMOSAT-3/COSMIC and OMI AI
    作者: Wang,KY
    貢獻者: 大氣物理研究所
    關鍵詞: LAYER;LIDAR
    日期: 2010
    上傳時間: 2012-03-27 17:29:35 (UTC+8)
    出版者: 國立中央大學
    摘要: Based on the data from the Formosa (Taiwan) Satellite (FORMOSAT)-3/Constellation Observing System for the Meteorology, Ionosphere, and Climate (COSMIC), combined with the Ozone Monitoring Instrument (OMI) aerosol index (AI) and reflectivity, this work calculates profiles of the atmospheric temperature response to Saharan dust outbreaks (SDOs), which is one component of the Saharan Air Layer (SAL) over the North Atlantic marine boundary layer. Our results show that warming of the SAL occurs below 5 km, with maximum warming located at 23 km altitude. The warming of the atmosphere below 5 km and above the surface also shows positive correlation between the OMI AI values and the 2-3 km maximum warming temperatures. Cooling in the upper troposphere occurs at 5-7 km altitudes and only appears in late summer months ( July-August). The amount and the vertical extent of the cooling depend on the amount of the OMI AI values. These analyses seem to support the cooling hypothesis of Dunion and Marron (2008) for the atmospheric layer about the SAL: that elevated dust loading leads to enhanced warming in the SAL, which leads to more strong vertical ascent and adiabatic cooling in the upper troposphere: and more dust loading leads to more net radiative cooling in the layer above the SAL The net cooling of the SAL in the lower troposphere appears to be limited to close to the surface. Hence, our analysis shows that temporal variation of the vertical extent of the warming and cooling of the atmosphere due to the SAL is a complex function of the time and the amount of dust loading associated with the SAL In this work we provide a very strong observational evidence, based upon the new FS3/C constellation, of the thermal impact of Saharan dust. In particular, we demonstrate that the surface cooling consequent to high optical thickness (and corresponding to a low level - about 2 km - heating) which was hypothesized by previous work on theoretical background, is actually very real. (C) 2009 Elsevier B.V. All rights reserved.
    關聯: ATMOSPHERIC RESEARCH
    顯示於類別:[大氣物理研究所 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML399檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明