English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41143735      線上人數 : 224
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51500


    題名: Compact self-constructing recurrent fuzzy neural network with decision feedback for quadrature amplitude modulation signaling systems
    作者: Chang,YJ;Ho,CL
    貢獻者: 通訊工程學系
    關鍵詞: BACKPROPAGATION ALGORITHM;EQUALIZER
    日期: 2011
    上傳時間: 2012-03-27 18:54:37 (UTC+8)
    出版者: 國立中央大學
    摘要: This paper proposes a novel adaptive decision feedback equalizer (DFE) based on compact self-constructing recurrent fuzzy neural network (CSRFNN) for quadrature amplitude modulation systems. Without the prior knowledge of channel characteristics, a novel training scheme containing both compact self-constructing learning (CSL) and real-time recurrent learning algorithms is derived for the CSRFNN. The proposed CSL algorithm adopts two evaluation criteria to intelligently decide the number of fuzzy rules that are necessary. The real-time recurrent learning is performed simultaneously with the CSL at each time instant to adjust DFE parameters. The proposed DFE is compared with several neural network-based DFEs on a nonlinear complex-valued channel. The results show that the CSRFNN DFE is superior to classical neural network DFEs in terms of symbol-error rate, convergence speed, and time cost. Copyright (C) 2011 John Wiley & Sons, Ltd.
    關聯: INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING
    顯示於類別:[通訊工程學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML642檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明