This paper proposes a self-constructing fuzzy neural network-based decision feedback equalizer (SCFNN DFE). An online learning algorithm containing the structure and parameter learning phases is employed in training the SCFNN DFE. Specifically, the feedforward input vector classification and a gradient-descent method are both used in this online learning algorithm. We show by simulations that the proposed SCFNN DFE offers improvement compared to the traditional DFE methods in the presence of frequency offset and phase noise.