English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41143559      線上人數 : 213
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51626


    題名: DETECTION OF LINE-SYMMETRY CLUSTERS
    作者: Hsieh,YZ;Su,MC;Chou,CH;Wang,PC
    貢獻者: 資訊工程學系
    關鍵詞: NEURAL-NETWORKS;VALIDITY MEASURE;DATA PROJECTION;DISTANCE;IMAGES;SEPARATION;TRANSFORM;ALGORITHM;FEATURES
    日期: 2011
    上傳時間: 2012-03-27 18:57:51 (UTC+8)
    出版者: 國立中央大學
    摘要: Many real-world and man-made objects are symmetry. Therefore, it is reasonable to assume that some kinds of symmetry may exist in data clusters. The most common type of symmetry is line symmetry. In this paper, we propose a line symmetry distance measure. Based on the proposed line symmetry distance, a modified version of the K-means algorithm can be used to partition data into clusters with different geometrical shapes. Several data sets are used to test the performance of the proposed modified version of the K-means algorithm incorporated with the line symmetry distance.
    關聯: INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL
    顯示於類別:[資訊工程學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML559檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明