English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41264219      線上人數 : 642
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51916


    題名: Automated classification of multi-spectral MR images using Linear Discriminant Analysis
    作者: Lin,GC;Wang,WJ;Wang,CM;Sun,SY
    貢獻者: 電機工程學系
    關鍵詞: ARTIFICIAL NEURAL-NETWORKS;FUZZY C-MEANS;SEGMENTATION;RECOGNITION;ALGORITHM;MODEL
    日期: 2010
    上傳時間: 2012-03-28 10:10:21 (UTC+8)
    出版者: 國立中央大學
    摘要: Magnetic resonance imaging (MRI) is a valuable instrument in medical science owing to its capabilities in soft tissue characterization and 3D visualization. A potential application of MRI in clinical practice is brain parenchyma classification. This work proposes a novel approach called "Unsupervised Linear Discriminant Analysis (ULDA)" to classify and segment the three major tissues, i.e. gray matter (GM), white matter (WM) and cerebral spinal fluid (CSF), from a multi-spectral MR image of the human brain. The ULDA comprises two processes, namely Target Generation Process (TGP) and Linear Discriminant Analysis (LDA) classification. TGP is a fuzzy-set process that generates a set of potential targets from unknown information, and applies these targets to train the optimal division boundary by LDA, such that three tissues GM, WM and CSF are separated. Finally, two sets of images, namely computer-generated phantom images and real MR images are used in the experiments to evaluate the effectiveness of ULDA. Experiment results reveal that UDLA segments a multi-spectral MR image much more effectively than either FMRIB's Automated Segmentation Tool (FAST) or Fuzzy C-means (FC). (C) 2009 Elsevier Ltd. All rights reserved.
    關聯: COMPUTERIZED MEDICAL IMAGING AND GRAPHICS
    顯示於類別:[電機工程學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML329檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明