We study the asymptotic dynamics of self-driven vehicles in a loop using a car-following model with the consideration of volume exclusions. In particular, we derive the dynamical steady states for the single-cluster case and obtain the corresponding fundamental diagrams, exhibiting two branches representative of entering and leaving the jam, respectively. By simulations we find that the speed average over all vehicles eventually reaches the same value, regardless of final clustering states. The autocorrelation functions for overall speed average and single-vehicle speed are studied, each revealing a unique time scale. We also discuss the role of noises in vehicular accelerations. Based on our observations we give trial definitions about the degree of chaoticity for general self-driven many-body systems.