本論文是以發展一套光學檢測系統為主,利用Double Zernike Polynomial 此函數包含視場與光瞳的像差變化描述,來量化光學元件偏心誤差,本系統可以增加光學檢測的效率,若有此套系統,將會對光學檢測有一大幫助。 模擬係數在系統有偏心誤差的情形下之變化的情況,針對於光學系統中每一個光學元件所擁有的自由度進行誤差模擬,以及兩個的自由度交錯模擬,分析後歸類出係數所對應透鏡存在誤差時的變化狀況,根據此狀況可以反推至系統中元件的偏心情況。 接著設計一套實驗系統去驗證模擬,此系統可以提供高解析度的成像以及多視場的像差資訊,並且使用Double Zernike polynomial來擬合所擷取到的圖形,除此之外,擷取圖形的方式為一次性的擷取多場的像差,這可以大大減少光學檢測的時間。 未來更有可能將所有誤差單一表格化儲存在光學系統內建記憶體中,依照各個不同的設計會對應至不同的修正係數,對於光學影像的品質可以更為提升。This thesis discusses the development of an optical alignment test system. This system utilizes coefficients of a Double Zernike Polynomial, which contains aberration information of both field and pupil, to quantify alignment errors in an optical system. This test system increases measurement efficiency, and thus will be greatly useful in optical shop testing. An optical system was first simulated to have certain alignment errors. The corresponding incurred changes in the Double Zernike coefficients were determined from the Double Zernike Table. These varied coefficients will be used to determine alignment errors in other optical systems. Next an experimental setup was built for verification. This setup provides high-resolution-images and multi field information. An algorithm was then used to perform Double Zernike polynomial fitting. This system acquires off-axis information in a single capture, thus it provides a much shorter processing time compared to many other optical measurement systems. Future work should be focused on improving the resolution and the accuracy of the system. This will increase the measurement accuracy.