多數金屬成品生產後的表面並不具有純淨的金屬表面特性,而是在空氣中被氧化後形成一層金屬氧化物附著於表面上,所以汽車汽缸表面結構及其表面處理有很大的關係,另方面金屬/氧化物介面對其他工業如電子零件,金屬陶瓷探測器(sensor),以及氧化物為底層的過度金屬催化劑,具有很重要的地位,尤其微觀及nano-scale 下,其表面物理特性更具有特別量子效應,電子特性,物理特性,奈米顆粒的結構及其磊晶成長於氧化物及金屬表上的研究及了解能促進微電子零件,metal-ceramic-based sensor 及特殊奈米結構的材料研發,並有助於表面被奈米小顆粒修飾的催化劑的製造及改良。目前中大擁有自德國哈柏所(Fritz-Haber-insitut) 研究所帶回的獨特高電子繞射(RHEED)、低能電子繞射(LEED)和AES 俄節儀器與設備。我們將鈷電解液電鍍electrodepoeition 於金單晶(111),(100)表面上,用高能繞射儀觀測鈷在金單晶上二維及三維晶體的結晶相(phase)及其對應金單晶底層的晶向成長 (crystalline orientation)。我們從高能繞射圖,首先從不同電子入射方向可獲得不同的 RHEED pattern,每一個RHEED pattern 相當於鈷倒易晶體(reciprocal lattice) 的切面圖,我們獲得兩個倒易晶體的切面圖,進而導出鈷奈米晶體的倒易晶格(reciprocal lattice of Co-nano clusters) 然後我們可以推導鈷的結晶相(crystalline lattice) 及鈷奈米晶體(粒)對應於金底層結晶的成長(orientation) 我們研究及觀測鈷奈米晶體的磊晶成長(epitaxial growth) 對應於不同的氧化物或金屬底層的表面結構,並了解其成長晶相及兩者接觸面間結構的相互關係。 ; This proposal states my research focuses in the next two years at the national central university. My main focus in the next two years is the use of reflection high energy diffraction to study the crystal structure of cobalt nano-culsters deposited on well ordered Au(111) surface. Experimentally, the method will be electrochemical deposition under potentiostatic condition. I will employ RHEED method to reveal the structures of Co deposited from the electrolyte and learn how to control the size and distribution of these magnetic materials. Since cobalt has a very different lattice constant from that of gold, it is expected to have 3D clusters of cobalt as the deposition process yields Co deposit. However, it is difficult, if not impossible, to determine how Co clusters are adsorbed on Au(111) substrate by using most surface sensitive tools. It is important realize that RHEED could lead to detailed characterization of the interfacial structures of Co deposit on Au(111). ; 研究期間 9708 ~ 9807