摘要: | 本計畫擬將傳統的向量量化(LBG algorithm)代 之以模糊分類法則(Fuzzy clustering algorithm),並運 用樹狀結構作為改良式的影像向量量化(Image vector quantization)之研究.吾人先將資訊源分為影 像像素(Image pixel)源與影像轉換(Transformation)源 兩類.然後,若以影像像素源為基礎,則利用模糊 分類法則,並依據樹狀結構,將歸屬函數( Membership function)相近者的像素小方塊歸類為同 一類;同時,可獲得該類(Cluster)的中心點值,即為 期望碼簿中的碼字(Codeword).另者,若以影像轉換 域為基礎,則必需先將一數位影像分成一4*4的 小方塊(Sub-block),並作2維的離散式餘弦轉換( 2-dimension discrete cosine transform)2-D DCT,取出代表性的轉換域係數約4-6個,組成特徵向量(Feature vector),以此特徵向量做為資料源的分類依據,同 時亦依據模糊分類法則,將歸屬函數相近者,建 構在樹狀結構中,並算出該類的中心值.最後,均 將其中心值作為碼字,以構成碼簿.上述方法,引 用特徵向量來分類,可以避免因依相似影像值 而有不同且差異頗大的特徵子方塊歸類在一起 ,而產生邊緣的退化(Degradation),更因而導致視覺 的不佳效果.同時,運用模糊分類法則來訓練碼簿,是在傳統向量量化LBG演算法上運用的一大 嘗試,尤其,將此法則建構在樹枝結構上,將可改 善傳統方法浪費較多運算時間的缺點,並使得 影像還原過程節省很多搜尋時間. ; 研究期間 8308 ~ 8407 |