本研究是延續陳穎俊(1999)、李宗益(2000)針對旅次選擇問題與路徑選擇問題之整合模型進行更深入完整之探討。動態用路人均衡雙邊限制起迄/出發時間/路徑選擇模型是以變分不等式構建,利用超級路網的概念求解,在此提出路徑基礎式之流線對角拉氏(梯度投影)法。由於現實路網中路段皆有其容量限制,為使模型更符合現實狀況,加入流入率路段容量限制式,構建含容量限制之動態雙邊限制模型,以測試範例進行測試與分析。 本研究並利用雙層規劃方法(Bi-level Programming Approach)構建動態號誌時制控制模型,上層模型為動態號誌時制最佳化模型,為求系統之總旅行時間最小化,下層模型為動態用路人均衡雙邊限制起迄/出發時間/路徑選擇模型,即用路人依據其最小旅運成本之觀念於適當時間出發,到達其目的地,同時滿足起迄對旅次選擇之均衡條件。透過變分不等式敏感度分析理論,以卓訓榮(1991)提出之廣義反矩陣方法(Generalized Inverse Approach)獲得敏感度分析資訊,發展動態號誌時制控制(雙邊限制)問題之求解演算法,最後以測試範例證實模型及演算法之正確性。 This thesis, as follow-up study of Ying-Chun CHEN(1999), Tsung-Yi LEE(2000), attempts to further some important issues based on the dynamic user-equilibrium doubly constrained origin-destination /departure time/route choice model formulated using variational inequality approach and the solution algorithm of my model is using streamlined diagonalization lagrangian(GP) method to solves super network problem. As a result of road has link capacity constraint in the actual network, in order to my model conform to practicality condition, attempt to incorporate inflow link capacity constrained into it, and formulated the dynamic capacitated user-equilibrium doubly constrained origin-destination/departure time/route choice model. And numerical examples are provided for test and analysis. That uses bi-level programming method to formulate the dynamic signal timings control (DSTC) model. The upper level is dynamic signal timings optimal model, it tries to minimum the total travel cost by allocating the green times and determining link capacities, and the lower level is dynamic user-equilibrium doubly constrained origin-destination /departure time/route choice model, based on the fixed link capacities , searches the shortest travel time time-route for use. In accordance with variational inequality sensitivity analysis theory attain sensitivity analysis information by generalized inverse approach and developing solution algorithm. Finally, making several numerical examples to verify this research is correctly.