English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41265863      線上人數 : 851
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/596


    題名: 宏觀收斂迭代法速度比較
    作者: 高銘伸;Ming-Shen Gang
    貢獻者: 土木工程研究所
    關鍵詞: 牛頓-拉弗森法;非線性代數方程式
    日期: 2001-07-11
    上傳時間: 2009-09-18 17:08:27 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 迭代法是計算方法中的一種基本方法,而在求解非線性代數方程式的領域中,牛頓-拉弗森法(Newton-Raphson method)一直被廣泛的應用,可是在應用時需要對問題瞭解很清楚,即大略知道解的位置,換句話說,必須給一個很好的初始值。 由於牛頓-拉弗森的收斂性太依賴於初始值,實際上,非線性方程式較複雜時,選取保證收斂的初始值是困難的。本研究的目的是在於嘗試發展新的方法,使在求解非線性方程式時,不需考慮初始值的位置,也就是發展一種宏觀收斂(Globally Convergent)的方法,加以改良牛頓-拉弗森來求解非線性方程式。 本研究將新發展出的座標平移法與其他宏觀收斂的迭代法做運算速度上的比較,以期對工程應用中求解非線性方程式能有所幫助。 When solving nonlinear equations the Newton-Raphson method is used by many people . But when we use the Newton-Raphson method to solve nonlinear equations , we must give the initial value close to the solution . This research studies a new method which is globally convergent. The new method improves the Newton-Raphson method . Then we can solve nonlinear equations by giving the initial value which is not close to the solution. We also compare the velocity of the new method with other globally convergent methods .
    顯示於類別:[土木工程研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明