本研究之目的在研擬含加勁阻尼剪力牆之RC 結構的設計程序,RC 構架的樑柱尺寸與配筋能必須符合規範韌性設計的要求,並藉由X 型鋼 板製作而成的加勁阻尼裝置,安裝於RC 剪力牆頂與RC 梁之間,作為 結構耐震的第一道防線,以降低梁柱構架受到中、小地震時的反應,並 在中震下加勁阻尼裝置可以優先降伏消能,以保護主要構材。另一方 面,如果結構所受之地震力大於設計地震力,則加勁阻尼裝置與韌性混 凝土樑柱構架可以一起降伏,有效消散地震能量,減緩地震力放大效 應,以保障結構安全。 加勁阻尼裝置利用樓層受力後所產生的相對變形,來承擔部分樓層 剪力,並有效地消散地震能量,而剪力牆只是利用其相對較大的勁度及 強度來傳遞剪力,而不需特別考慮韌性問題。 本文以一棟12 層樓RC 構架進行研究,構架採用ETABS 程式進行 靜態與動態的彈性分析與設計,配合不同加勁阻尼裝置承力比所設計之 構架則分別ETABS 7.0 NONLINEAR 進行非線性推倒分析,並利用台中 市測站所記錄之集集地震地表加速度記錄,配合RUAUMOKO 程式做 非線性歷時分析,以檢核設計結果之合理性,並探討不同加勁阻尼承力 比對受震反應之影響。 A design procedure for ADAS-shear wall RC building structures is presented in this study. The ADAS device (Added Damping And Stiffness device) is made of several X-shape steel plates, which are placed parallel to each other and are welded to two rectangular steel plates at the two ends. The devices are installed between the bottom of RC girders and the top of RC walls using embeded bolts. A 12-story RC building structure is used to demonsrate the proposed design procedure. To study the influences of elastic stiffness of the device on the seismic responses of the structure, three sets of ADAS devices are designed based on different percentages of the story shear forces sustained by devices. The effectiveness of the ADAS devices are verified by using static pushover analyses and nonlinear dynamic analyses. The major findings are: 1) Properly designed ADAS devices can dissipate seismic energy effectively. 2) The higher elastic stiffness of ADAS devices, the lower story drift ratios can be found. 3) To prevent the early yielding of beams, the moment capacity of beams in frames without RC walls are needed to be higher than that of beams in bare frames. 4) The strength reduction factors calculated from the results of pushover analyses are around 6~7.