中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/60985
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 40251111      Online Users : 315
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/60985


    Title: 類磊晶薄膜成長與調控並利用於太陽能電池之研究;The Growth and Modulation of Epitaxial Si Thin Films And The Application for Crystal Silicon Solar Cells
    Authors: 鍾發源;Chung,Fa-Yuan
    Contributors: 照明與顯示科技研究所
    Keywords: 電子迴旋共振化學氣相沉積法;低溫;磊晶;太陽能電池;薄膜;ECRCVD;low temperatures;epitaxial;solar cell;thin film
    Date: 2013-07-22
    Issue Date: 2013-08-22 12:08:37 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 矽晶太陽能電池的製作可運用很多方法,通常使用高溫擴散和離子佈植的方式摻雜使之成為一P-N接面,而在高溫擴散的方法必須使用高於900oC的溫度來活化摻雜物,所以這些製造技術需耗費很多的能量,本研究則是使用ECR-CVD製程機台,在製作太陽能電池技術方面,能以低溫成長(<200oC)矽薄膜之類磊晶摻雜層為優點,相對於高溫擴散的方法,減少了許多的熱損耗問題。
    首先研究成長類磊晶摻雜矽薄膜方面,藉由改變ECR-CVD系統之微波功率、工作壓力、摻雜氣體混氣比與薄膜厚度之製程條件的改變,來探討成長類磊晶摻雜矽薄膜結構與電特性。研究發現能在低微波功率與高工作壓力下,可使矽薄膜在厚度7nm時摻雜濃度為1.6x1019 cm-3,其電阻率可達6.7x10-3 Ω-cm,且結晶率高達79%;另外隨著摻雜氣體混氣比的改變,並能調控其摻雜濃度的變化從2.2x1017~2.3x1020 cm-3。
    而後以元件結構如下Ag/Ti/ITO/Si:H(p+)/ c-Si(n)/ Si:H (n+)/Ti/Ag製作太陽能電池,由於能夠在薄的厚度下摻雜出高的載子濃度與低的電阻率,這樣將會降低太陽光源於正面入射時的吸收,且由於如上述好的矽薄膜電特性,所以能降低其太陽能電池串聯電阻,並利用上述不同性質摻雜矽薄膜於矽晶太陽能電池上研究其光電轉換特性。我們藉由調變摻雜氣體混氣比、微波功率、及工作壓力之參數得到不同的摻雜濃度射極層,對應出當摻雜濃度>8x1019 cm-3時能使太陽能電池之開路電壓維持於560mV以上,及使其短路電流密度為35mA/cm2,所以本研究可在平面n-type FZ (100)矽晶基板上最佳太陽電池特性為:Voc=560.4mV、Jsc=37.69 mA/cm2、FF=73.3%,最後所得之效率在太陽源AM1.5於面積1 cm2為16.23%。
    The production of silicon solar cells can use many methods, commonly used high-temperature diffusion and ion implantation to form a PN junction. The activation temperature of dopant is above 900oC for high-temperature diffusion and ion implantation methods, it will consume much energy of these manufacture technologies. In this thesis for the fabrication technology of c-Si solar cells, we can grow epitaxial-like silicon thin films with dopants at low temperatures (<200oC) by ECRCVD. It will diminish issues of energy consumption, as compared with the traditional high-temperature diffusion process.
    For the study of epitaxial-like silicon thin films with dopants, we modulate the recipes of ECRCVD, such as microwave power, working pressure, dilution ratio of process gas, and thickness to investigate their structural and electronic characteristics. The thickness and crystalline fraction of the boron-doped thin films were measured by spectroscopic ellipsometry (SE), and their electrical properties such as mobility, concentration, and resistivity were measured by Hall effect measurement. Under the condition of low microwave power and high working pressure, the carrier concentration, and resistivity of a boron-doped epitaxial-like Si thin film with 7 nm thickness is 1.6x1019(cm-3), and 6.7x10-3(Ω-cm), the crystallinity is about 79%. Furthermore, we can control the carrier concentration varied between 2.2x1017 and 2.3x1020(cm-3) under the modulation of process gas dilution ratio.
    The c-Si solar cell was fabricated with the structure : ITO / epi-Si:H (p+) / c-Si(n) / μc-Si:H (n+). Doped with a high carrier concentration and a low resistivity of the thin thickness that will reduce the solar light incident on the front of the absorption. The low electrical properties of silicon thin film solar cells can be reduced series resistance, and doped silicon thin films with different silicon solar cell research in the photoelectric conversion characteristics. We modulate the doping gas ratio, microwave power, and working pressure to obtain various carrier concentrations of emitter thin films. When the carrier concentration is above 8x1019 cm-3, the 560 mV of Voc and 35 mA/cm2 of Jsc can be achieved in the performance of solar cells.
    Therefore, this study can be in the plane n-type FZ (100) silicon substrate optimum solar cell characteristics: Voc = 560.4mV, Jsc = 37.69 mA/cm2, FF = 73.3%, finally resulting in the efficiency of solar source AM1.5 in 1 cm2 area was 16.23%.
    Appears in Collections:[Institute of Lighting and Display Science ] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML843View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明