English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41275578      線上人數 : 546
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/61097


    題名: 複數模糊類神經系統於多類別分類問題之研究;A Study on Multi-class Classification Using Complex Neuro-Fuzzy System
    作者: 羅偉成;Lo,Wei-Cheng
    貢獻者: 資訊管理學系
    關鍵詞: 多類別分類問題;複數模糊類神經系統;一對全部;混合式學習法;F-score;屬性選取;標準粒子群演算法;遞迴最小平方估計法;multi-class classification;complex neuro-fuzzy system (CNFS);one-against-all;hybrid learning;F-score;feature selection;standard particle swarm optimization;recursive least squares estimator
    日期: 2013-07-12
    上傳時間: 2013-08-22 12:11:48 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究提出一種分類器架構:CNFS-OAA,其為一基於複數模糊類神經系統
    (Complex neuro-fuzzy system, CNFS) 的建模程序,透過一對全部(One-against-all, OAA)
    方法將資料集分解為多個二類別資料,並以動態探勘模糊法則的方式來處理分類問題。
    在CNFS的建模過程中,將使用標準粒子群演算法(Standard particle swarm optimization,
    SPSO) 來調整其前鑑部參數,與遞迴最小平方估計法(Recursive least squares estimator,
    RLSE) 來調整其後鑑部參數。而CNFS的法則探勘方式,其法則數量將依據訓練階段之
    分類正確率來動態增加。當訓練正確率未達到門檻值時,將會探勘更多的法則,並將已
    經可被正確分類的資料從訓練資料集中移除。為了提升建模效率,本研究將使用F-score
    屬性選取方式,來降低資料集的維度,在維持甚至提升正確率的情形下節省計算成本。
    最後,從UCI機器學習資料庫取得十一個真實世界的資料集,來檢驗本研究提出的方法,
    並與其他學者提出的分類演算法比較。從實驗結果可以發現,本研究所提出的方法在分
    類正確率上能擁有良好的表現。
    In this study, a classifier called CNFS-OAA has been presented, where modeling
    procedure is based on complex neuro-fuzzy system (CNFS). The training dataset are divided
    into multiple binary-class subsets gradually by using one-against-all (OAA), as the training
    procedure proceeds. The fuzzy rules of CNFS are mined dynamically. In the CNFS modeling
    procedure, the method of standard particle swarm optimization (SPSO) is used to adjust the
    premise parameters and the algorithm of recursive least squares estimator (RLSE) is used to
    adapt the consequent parameters. The method of rules mining for CNFS is that the number of
    fuzzy IF-THEN rules is incremented dynamically according to the accuracy of classification
    while training. More rules will be mined when the training accuracy cannot reach the
    threshold, and the tuples classified correctly will be removed from the training dataset. For the
    purpose of increasing modeling performance, a method of feature selection called F-score is
    used to choose useful features and so to reduce the feature dimensions of dataset. By this way,
    the computational cost can be saved while keeping or even improving the accuracy. In this
    study, eleven datasets from the UCI machine learning repository have been used to evaluate
    the approach proposed. The results by the proposed approach are compared with those by
    other noted approaches. The experimental results show that the approach proposed has fine
    performance on classification.
    顯示於類別:[資訊管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML764檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明