English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41268868      線上人數 : 181
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/61606


    題名: 智慧型控制數位化串聯諧振轉換器之研製;Design and Implementation of DSP-based Intelligent Control for Series Resonant Converter
    作者: 王昇龍;Wang,Sheng-Lung
    貢獻者: 電機工程學系
    關鍵詞: 機率型模糊類神經網路;對稱歸屬函數之TSK機率模糊類神經網路;數位訊號處理器;串聯諧振轉換器;probabilistic fuzzy neural network;TSK-type probabilistic fuzzy neural network with asymmetric membership function;digital signal processor;series resonant converter
    日期: 2013-08-09
    上傳時間: 2013-10-08 15:23:33 (UTC+8)
    出版者: 國立中央大學
    摘要: 本論文目的為研製以數位訊號處理器為基礎之智慧型控制串聯諧振轉換器,其中串聯諧振電路採用LLC架構。在LLC架構中,是以固定50%責任週期之互補訊號驅動功率晶體,並藉由調變頻率使變壓器一次側之漏電感、激磁電感、諧振電容以及開關上的寄生元件產生諧振,達到零電壓切換來降低元件的切換損失,且在變壓器二次側整流電路使用同步整流功能,以功率開關取代二極體來減少導通損失進而提升系統效率。為了改善輸出電壓在負載調節時的暫態響應,本文提出兩種智慧型控制器取代比例積分控制器,一個是機率型模糊類神經網路,另一個是非對稱歸屬函數之TSK機率模糊類神經網路。本文將詳細介紹機率型模糊類神經網路以及非對稱歸屬函數之TSK機率模糊類神經網路控制器之網路架構、線上學習法則以及收斂性分析。最後透過實驗結果來驗證其可行性。
    The purpose of this thesis is to develop a digital signal processor (DSP) based intelligent control of series resonant converter (SRC). The SRC is constructed using LLC resonant tank which is driven by a half-bridge circuit with fixed 50%-duty carrier frequency. The resonant phenomenon can be obtained by using of the leakage inductance of primary coil, the magnetizing inductance of the transformer, the resonant capacitor and parasitic component of power MOSFETs. Moreover, the zero-voltage-switching (ZVS) can be achieved using resonant phenomenon to reduce the switching loss. Furthermore, the synchronous rectifier is added in the secondary side of transformer by using the power MOSFETs in place of the diode to reduce the conduction loss. In addition, to improve the transient response of the voltage regulation during load variation, two intelligent controls are proposed. One is the probabilistic fuzzy neural network (PFNN), and the other is the TSK-type probabilistic fuzzy neural network with asymmetric membership function (TSKPFNN-AMF). The network structures, online learning algorithms and convergence analyses of the PFNN and the TSKPFNN-AMF controls are introduced in detail. Finally, the feasibility of the proposed control schemes are verified through experimentation.
    顯示於類別:[電機工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML839檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明