中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/6242
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41253611      線上人數 : 343
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/6242


    題名: 探討Alanyl-tRNA synthetase的演化及專一性
    作者: 胡小珊;Xiao-Xian Hu
    貢獻者: 生命科學研究所
    關鍵詞: Alanyl-tRNA synthetase;AlaRS
    日期: 2001-07-10
    上傳時間: 2009-09-22 10:16:15 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 大腸桿菌alanyl-tRNA synthetase(AlaRS)的胺基酸序列可以約略分成2個功能區域:N端是酵素活化區可以進行胺醯化作用(aminoacylation);C端則與此酵素形成多聚體(oligomerization)有關。將目前已知不同物種的AlaRS進行胺基酸初級結構比對,發現其N端具有高度的保留性,因此可能是演化早期即已存在;而C端其保留性非常的低,可能是演化後期才被加入的部分。在生化活性方面,N端AlaRS與全長AlaRS對microhelix(tRNAAla acceptor stem的部分)的催化能力相近。加上先前的研究結果,一般認為AlaRS對tRNAAla專一性的辨識位置是位在N端(胺基酸1-461),C端則是增加此酵素與tRNA的非專一性結合能力。 因此我們想要利用AlaRS的N端及一些非專一性的tRNA結合蛋白,來組合一個在活體中具有AlaRS功能的蛋白質。我們的結果顯示,大腸桿菌的AlaRS 位於C端形成多倍體區域在細胞中是必需的。不論是大腸桿菌AlaRS的N端胺基酸1-461或是大腸桿菌AlaRS的N端胺基酸1-699,皆不能補償大腸桿菌AlaRS基因(alaS)刪除株。而融合蛋白質(非專一性tRNA結合蛋白質與大腸桿菌AlaRS的N端胺基酸1-461或是大腸桿菌AlaRS的N端胺基酸1-699的組合)也不能明顯的互補大腸桿菌AlaRS基因(alaS)刪除株。酵母菌的融合蛋白質也不能補償酵母菌AlaRS基因(ALA1)刪除株。但是有趣的是我們發現,將酵母菌細胞質的AlaRS基因構築在具ADH promoter的載體上時,不但可以補償酵母菌AlaRS細胞質刪除株的功能,同時也可以補償酵母菌粒線體刪除株的功能。因此我們推測,在酵母菌中,一個ALA1基因會轉譯出具有細胞質及粒線體雙重功能的AlaRS。 The polypeptide sequence of E. coli alanyl-tRNA synthetase (AlaRS) can be divided into two functional domains: an N-terminal domain, which is necessary and sufficient for aminoacylation, and a C-terminal domain, which is involved in oligomerization of the enzyme. Primary sequence analyses show that the N-terminal domain is highly conserved among all known AlaRSs and is believed to be related through evolution, while the C-terminal domain shares relatively low homology among the alanine enzymes and is thought to be added to the molecule late in evolution. As a consequence, the N-terminal domain of AlaRS exhibits a catalytic activity similar to that of the full-length enzyme towards a microhelix substrate based on the acceptor stem sequence of tRNAAla. These results and others suggest that the specificity determinants of AlaRS for recognition of tRNAAla lie mainly in the N-terminal domain. We are motivated to ask whether we could assemble an alanyl-tRNA synthetase that is active in vivo, using the N-terminal domain of AlaRS and nonspecific RNA binding domains. Our results show that the C-terminal oligomerization domain (residue 700-875) of E. coli AlaRS is essential for its in vivo function. Neither N461 (containing residue 1 to 461) nor N699 (containing residue 1 to 699) can complement an alaS (the gene coding for E. coli AlaRS) knockout strain. Fusion of a nonspecific RNA binding domain to either N461 or N699 has no significant effect on its complementing activity. Similar results were obtained using yeast AlaRS as a template for construction of fusion proteins. Interestingly, we found that the putative open reading frame for the yeast cytoplasmic AlaRS, when cloned in a high-copy-number vector under the control of a constitutive ADH promoter, could complement both the cytoplasmic and mitochondrial defects of an ALA1 (the gene coding for yeast AlaRS) disrupted allele, suggesting that a single ALA1 gene codes for both the cytoplasmic and mitochondrial functions of a AlaRS in yeast.
    顯示於類別:[生命科學研究所 ] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明