本論文發展一套適合雙光子聚合技術(Two-photon Polymerization, TPP)之五軸雷射加工路徑生成法則。 本論文首先介紹一般典型TPP加工程序包含雷射路徑掃描、TPP切層方法及製造品質控制。其次介紹TPP五軸實驗設備,包含雷射、顯微鏡、樹酯材料及五軸運動平台。進而提出本論文開發的五軸雷射加工路徑生成法則。 本論文將以TPP微製造技術為基礎,創新使用五軸加工方法為輔,開發出一套可製造超高精度微結構的五軸加工路徑生成法則。其創新的點除了以五軸運動平台來取代傳統使用的三軸平台外,其開發之雷射加工路徑生成法則中會先使用臨界角將微結構外表區分出兩種不同區域。利用拼布的概念將此兩不同區域分別產生出表布切層及縫布切層路徑,其中將以適應性切層演算法產生表布路徑及利用輪廓平形偏移演算法來產生縫布路徑。最後會以五軸輪廓切線成形法來產生最後的五軸雷射加工路徑,其概念係控制五軸運動平台讓雷射光軸沿著微結構的外表切線垂直方向移動,如此將可以產生與微結構表面垂直的聚合體,以避免傳統TPP使用三軸運動平台而導致尺寸不精確情況發生。其所製造的3D微結構具有較佳的結構強度與超高尺寸精度,可應用於各式不同的應用。 本論文最後將舉5種不同實體模型,利用本論文提出之五軸雷射加工路徑生成法則產生出切層結果和雷射路徑,用以驗證本研究之正確性及效率。 ;This paper studies the laser tool path generation for 5-axis micro-fabrication system by Two-photon Polymerization(TPP). At the beginning of this paper, there is an introduction about the laser scanning path by traditional TPP, slicing method and product properties by TPP. Second, we will go on to the introduction about the experimental equipment for 5-axis based on the TPP with laser, microscope, resin material and motion platform by 5-axis. Furthermore, the paper presents the development of the laser tool path generation for 5-axis micro-fabrication system. This paper will develop a laser tool path generation for fabricating structures with ultra-precision based on TPP micro-fabrication and 5-axis machining techniques. Laser tool path generation will be developed using the critical slicing angle to distinguish between two different area. Using the Patch concept were to produce two different area of the Sheet fabric and Sewing fabric. In this method, adaptive slicing process to generation the Sheet path and using the contour offset algorithm to generation the Sewing path. Finally, the contour will be tangential axis forming method to produce the final laser tool path for 5-axis micro-fabrication system. In this method, the laser focus moves along the vertical contour of a microstructure by 5-axis motion stage and polymerized at the perpendicular direction of the tangent. This can avoid the dimensional deformation which is usually caused by applying 3-axis stage in general. The 3D microstructure fabricated by proposed process has better structure strength and ultra-high dimensional accuracy, that can suit for a variety of applications. Finally, this paper will include 5 different models, using the development of the laser tool path generation for 5-axis micro-fabrication system in this paper to generate the laser scanning path. It can to verify the accuracy and efficiency of this paper.