太陽能電池模組在戶外發電時,吸收太陽發出來的部分輻射,其 中大部分的光能會被轉變熱能,只有一小部分被轉為電能,這一小部 分電能還會因為溫度增加,降低發電效率,如果能同時利用太陽能產 生的光能以及熱能,將會大大提升太陽能電池系統效益。 在此研究中,利用模組表面層添加水的方式,可以降低模組的溫 度,提升模組輸出功率,而模組表面的水更可以回收利用,如此便能 有效的利用太陽能產生的電能以及熱能,在相同的單位面積下,可以 整合太陽光電以及熱水回收,提升太陽能統使用效益。 最後,以5KW的系統來看,相較於未使用本系統的發電系統,5 mm高的水冷卻系統可以提升發電量744.5 W,10 mm高的水冷卻系統 可以提升發電量656 W,而在熱水回收方面, 5 mm高的水冷卻系統 每日可回收溫度40℃的熱水為982.1公升,10 mm高的水冷卻系統每日 可回收溫度40℃的熱水為1309.4公升;換算成家用電來看,5 mm高的 水冷卻系統每日增加收益21.59度,10 mm高的水冷卻系統每日增加收 益26.77度,日積月累下,增加的收益非常可觀。;When a photovoltaic module absorbs the solar radiation in outdoor, only a portion of energy can be converted to the electrical power and the most of the energy will become heat. The heat can increase the temperature and decrease the photoelectric efficiency. If the electrical power and the thermal power can be achieved from the solar energy at the same time, it will be greatly enhanced the photovoltaic system efficiency. In this study, the surface water-cooling and the water recycling methods were applied for photovoltaic modules to reduce the temperature of modules which can increase the output power of the modules. Besides, the thermal power can also be utilized by the recycled hot water. By combining the electrical and thermal powers, the efficiency of the photovoltaic module can be increased quite substantially. Finally, to compare a 5KW photovoltaic system with and without water cooling, the 5-mm and the 10-mm surface water-cooling methods can improve 744.5 W and 656 W of the output powers, respectively. Besides, the recycled 40 ℃ water can be achieved about 982.1 and 1309.4 liters daily for the 5-mm iii and the 10-mm surface water- cooling method, respectively. Totally, the electrical power can be reduced for 21.59 KWH and 26.77 KWH, respectively.