中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/68176
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78937/78937 (100%)
Visitors : 39854765      Online Users : 378
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/68176


    Title: 液體與沙粒特性對動態毛細壓力與入滲現象影響之觀測
    Authors: 劉煜彤;Liu,Yu-Tung
    Contributors: 水文與海洋科學研究所
    Keywords: 動態毛細壓力;入滲現象;Green-Ampt Model;GAM;MGAM
    Date: 2015-07-29
    Issue Date: 2015-09-23 10:50:52 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 入滲是水分自地表進入到土壤的過程,其重要性包括灌溉策略的制訂發展、
    估計地下水補注的時間與數量,以及化學物質在土壤中的傳輸過程。在水文研究
    的應用上,有很多估計入滲量的方法曾被提出,例如Green-Ampt model (GAM)
    (Green and Ampt, 1911)、Richards方程(Richards, 1931)等。在傳統達西尺度中,毛
    細壓力常常被假設為定值,稱為平衡毛細壓力,但相關研究顯示,流速較快時,
    實際毛細壓力與平衡毛細壓力不相等。此非平衡的毛細壓力稱為動態毛細壓力。
    本研究以沙柱實驗,觀測不同暫水深條件下,入滲過程中溼潤面的移動速度。並
    搭配GAM與修正型GAM的模式比較,探討在不同材質與粒徑中,流速的變化與
    動態毛細壓力的關係,沙粒特性對動態毛細壓力以及入滲現象的影響。;Infiltration happens when water on the ground surface enters the soil.
    Understanding the infiltration process is important to draw up the irrigating strategies,
    estimate the time and quantity of the groundwater recharge, and understand the
    transport of the chemicals in the soil. Mathematical models had been presented to
    simulate the infiltration process, such as Green-Ampt Model (GAM) (Green and
    Ampt, 1911) and Richards’ equation (Richards, 1931). In the traditional Darcy-scale
    model, the capillary pressure is usually assumed as a constant, that is equilibrium
    capillary pressure. However, studies show that the difference between the capillary
    pressure and the equilibrium capillary pressure is significant in high flow velocity.
    This non-equilibrium capillary pressure is called dynamic capillary pressure. In this
    study, we performed a series of infiltration experiments in sand columns with different
    types of sands and under different boundary conditions. To show the effects of
    dynamic capillary pressure, we compared the results of the experiments with the
    simulations from the GAM and the modified GAM which takes the dynamic capillary
    pressure into account. We found that the dynamic effects are more significant during
    the infiltrations in sands with large grain size than the ones with small grain size.
    Appears in Collections:[Graduate Institute of Hydrological and Oceanic Sciences] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML595View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明