第二部分為元件製作,選擇在鍺靶材上擺放硼顆粒以及使用鍺硼合金靶材這兩種方式,以濺鍍法製作p-type單晶鍺薄膜。摻雜鍺薄膜的品質與硼顆粒擺放量多寡有關,在擺放量12.5%與25%的比較下,硼顆粒擺放量較少,獲得的摻雜鍺薄膜品質較好。同時在玻璃基板上量測鍺硼薄膜電性,其摻雜濃度最高可達〖"10" 〗^"21" 〖"cm" 〗^"-3" ,顯示硼顆粒的添加使鍺薄膜達重摻雜效果。接著我們使用鍺硼比例99/1wt%的合金靶材,製作電阻率低於0.01 ohm-cm,摻雜濃度達〖"10" 〗^"19" 〖"cm" 〗^"-3" 的單晶鍺硼薄膜,並加以製作成鍺矽太陽能電池,驗證p-type鍺薄膜的摻雜效果,經由爐管退火改善p-type鍺薄膜品質,元件最佳表現可得開路電壓261.83 mV,短路電流10.78 mA,填充因子54.4%,轉換效率1.92%。 ;This work presents an intrinsic and a boron-doped monocrystalline Ge (i-Ge and p-type Ge) thin films were deposited on silicon substrates by using the method of magnetron sputtering. XRD, Raman, AFM, EPD and Hall measurement were used to investigate the qualities of Ge thin films. And the post annealing process was chosen to improve the Ge thin film qualities. In the first part of this work, the monocrystalline i-Ge film was deposited with the aim to integrate Ge and GaAs on a Si substrate as a multi-junction solar cell. Four kinds of Si (100) substrates including 0°, 4°, 6° off-cut angles and two different grades of Si substrates were chosen to investigate the crystalline properties of the Ge thin films. The i-Ge thin film deposited on Si (100) substrate with 6° off-cut angle toward (111) after post annealing at 700℃ has the lowest threading dislocation density nearly 9.8"×" 〖"10" 〗^"5" 〖"cm" 〗^"-3" . In the second part, the monocrystalline p-type Ge thin films were fabricated by putting boron grains on a Ge target and Ge/B alloy target, respectively. P-type Ge thin film with the resistivity < 0.01 ohm-cm and the carrier concentration "~ 5×" 〖"10" 〗^"19" " " 〖"cm" 〗^"-3" were achieved after post annealing. Finally Ge/Si solar cell was fabricated with the best device performances of "V" _"OC" 261.83 mV, "I" _"SC" 10.78 mA, FF 54.4%, and conversion efficiency 1.92%.