English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41272341      線上人數 : 1103
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/68735


    題名: 分類問題之研究-以複數型模糊類神經系統為方法;A Study on Classification Problem using Complex Neuro-Fuzzy Approach
    作者: 梁杰榮;Leong,Kit-weng
    貢獻者: 資訊管理學系
    關鍵詞: 特徵選取;分類;資訊理論;複數型模糊集合;feature selection;classification;information theory;complex fuzzy
    日期: 2015-07-15
    上傳時間: 2015-09-23 14:22:48 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究提出一個複數型模糊類神經系統 (Complex neuro-fuzzy system, CNFS)和採用以資訊理論 (Information theory)為基礎的特徵選取方法應用於分類問題。特徵選取方面以資訊理論為基礎,透過結合最小冗餘和最大相關的概念尋找最佳的特徵子集合。CNFS分類器的建模過程分成結構學習階段和參數學習階段。結構學習階段採用格狀分割法 (Grid partitioning method),為CNFS分類器挑選重要的模糊規則。參數學習階段使用粒子群演算法 (Particle swarm optimization, PSO)和遞迴式最小平方估計器 (Recursive least squares estimator, RLSE)分別調整模型的前鑑部參數 (Premise parameters)和後鑑部參數 (Consequent parameters),稱為PSO-RLSE複合式學習演算法,這方法能使模型在建模過程中迅速收斂,達到快速學習的效果。本研究提出的CNFS分類器結合複數型模糊集合 (Complex fuzzy sets, CFSs)和自適應類神經模糊推理系統的架構(Adaptive neuro-fuzzy inference system, ANFIS),能增加模型的非線性映射能力和提供更靈活的架構。本研究使用美國加州大學爾灣分校 (University of California-Irvine)的機器學習資料庫中十個來自不同領域的資料集來驗證本研究提出的方法,並與其他分類器比較。實驗結果顯示,本研究提出的方法在不同領域的分類問題有優秀的表現。;We present a complex neuro-fuzzy system (CNFS) as a pattern classifier that utilizes complex fuzzy sets. For feature selection of training samples, we consider the removal of redundant and irrelevant features by which we aspire to improve the predictive accuracy of the classifier. Based on information theory, we employ a well-known feature selection method that combines minimal redundancy and maximal relevance for feature selection. One crucial problem for fuzzy-rule based model construction is that the amount of data is usually large in volume, which would make the consequence part parameters of rule base grow exponentially. A modified grid-partitioning method that can select portioned area of input space if some rule-firing-strength threshold is satisfied is employed to deal with that major problem. For the parameter learning method, the particle swarm optimization algorithm (PSO) and the recursive least-squares estimator (RLSE) are integrated as a hybrid learning method to adjust the free parameters of the CNFS effectively. We conducted experiments using 10 data sets of various fields and made performance comparison with other classifiers. The experimental results demonstrate that our approach can find smaller size feature subset with high classification accuracy.
    顯示於類別:[資訊管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML351檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明