中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/69055
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41255978      Online Users : 194
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/69055


    Title: 模糊系統觀測控制器設計─齊次多項式尤拉法;Observer and Controller Design of Fuzzy Systems via Homogeneous Euler′s Method
    Authors: 林承緯;Lin,Cheng-wei
    Contributors: 機械工程學系
    Keywords: 非二次穩定;平方和;參數相依齊次多項式;Takagi-Sugeno模糊系 統;尤拉齊次多項式定理;泰勒級數;Non-quadratic stability;Sum of squares;Homogeneous polynomially parameter-dependent (HPPD) functions;T-S fuzzy systems;Euler′s Theorem for Homogeneous Functions;Taylor-Series
    Date: 2015-07-30
    Issue Date: 2015-09-23 15:12:42 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本論文主要研究連續模糊系統的非二次穩定(non-quadratic stability)
    條件,以泰勒級數建模得出模糊系統,且以非二次的李亞普諾
    夫函數(Lyapunov function) 及對時間的變化率作為穩定的條件,對
    於決定擴展狀態的高階李亞普諾夫函數,其形式為
    V(x,e)=[x e][adj(Q(x)) 0;0 U(e)][x;e]
    而使用尤拉齊次多項式可以排除V(x,e)對時間t 微分所產生Q(x) 之
    微分項,再以平方和方法(Sum-of-Squares) 來檢驗模糊系統的穩定條
    件,並設計出其觀測器及控制器。
    由於觀測器與控制器的相依性,分離設計並不容易,本論文將以
    限制條件分段解析,並找出有條件下的分離設計方法。;It′s not easy to separate the synthesis of observer and controller
    due to their dependability. The main contribution in this thesis is
    non-quadratic stability of continuous fuzzy systems, which is modeled
    by Taylor series method. And we can solve the inequations derived
    from non-quadratic Lyapunov function and its time gradient. The
    form of extension from the state dependent Riccati inequalities to
    non-quadratic Lyapunov function is
    V(x,e)=[x e][adj(Q(x)) 0;0 U(e)][x;e].
    To overcome the di erential terms of Q(x) derived from time gradient
    of V(x,e), we introduce Euler′s homogeneous polynomial theorem
    to derive the SOS condition and solve for the observer and controller
    with sum-of-squares approach.
    Appears in Collections:[Graduate Institute of Mechanical Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML316View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明