摘要 本篇論文利用多次陽極處理及移除氧化鋁步驟在鋁箔及鋁薄膜上製造出高規則性陽極氧化鋁膜(anodic aluminium oxide, AAO),在柔軟的鋁箔上,AAO模板製作的光學元件可能被損壞,所以鋁箔基板上不適宜元件製作,無法達到很好的利用。嘗試將鋁箔式規則陽極氧化鋁實驗方式應用於玻璃基板鋁膜上的AAO成長,玻璃上的鋁膜鍍製方式可分為電子槍蒸鍍、磁控濺鍍以及多股鎢絲蒸鍍三種方式。在膜厚較薄的鋁膜,表面粗糙度會影響初期的孔洞形成,且陽極處理的時間不足會使得孔洞的穩定成長無法達成,因此選擇表面粗糙度較佳的磁控濺鍍以及多股鎢絲蒸鍍兩種鍍膜方式,鍍製膜厚較厚的鋁膜。最後得到的厚鋁膜,其陽極處理時間可被延長,以達到孔洞的穩定成長,經過多次陽極處理及移除氧化鋁步驟,孔洞規則度可大為改善。 移除時間的控制對於AAO表面孔洞規則度有很大影響,移除時間要控制在剛好把前一層氧化鋁完全移除,使得前一層阻障層會在鋁基板表面留下半圓形凹槽,此凹槽是孔洞自我組織可調整到的最規則位置,凹槽除了可使下一次陽極處理時能有好的初始表面以利電場分布,也使得製造出的陽極氧化鋁膜,從膜層表面到底部都能達到一致的規則性 利用此電化學方式可在玻璃基板上獲得大面積、製程便宜的高規則度AAO模板。此製程AAO孔洞直徑可調範圍30 ~ 100 nm。此AAO模板製程可被應用來製作奈米尺寸的孔洞、管材和線材之陣列,以形成二維光子晶體之結構,或以AAO為基板,利用自我複製法(autocloning)製作三維光子晶體結構。 Abstract In this thesis the multi-anodization was applied to fabricate self-organized nanoporous anodic aluminum oxide (AAO) from the foils and the films of aluminum. AAO is unsuitable to be constructed optical devices for its property of easily crack when fabricated on the soft aluminum foils. So, the thin-film type of AAO templates was developed and fabricated on a glass substrate by multi-anodizations. The depositions of the aluminum films on the glass substrates were made by three different methods: E-gun deposition, magnetron sputtering deposition, and resistive heating deposition. The thicker thickness and the smoother surface of the aluminum films would assist AAO templates to get the better periodic arrangement. The initial pores of AAO were dependent on the surface roughness of the aluminum films. When the aluminum film was too thin the AAO process was unable to reach the stable growth status. For the reason of getting better surface roughness than the E-gun deposition, the magnetron sputtering deposition and the resistive heating deposition were chosen to deposit the aluminum film. Besides, by repeating the anodization process, the AAO templates will get the better periodic arrangement than only by one anodization process. The AAO template technique is very cheap and can obtain large useful area during the process. The diameters of the pores were adjustable between 30nm to 90nm. It can be applied to the fabrication of two- or three dimension photonic crystal devices.