近年來,低溫多晶矽(LTPS)引起了很多人的關注。本研究旨在探討電子槍蒸鍍非晶矽膜層與射頻磁控濺鍍非晶矽膜層不同的膜質結構對鋁金屬誘發結晶矽製程的影響。首先在室溫下,利用熱電阻蒸鍍系統將鋁金屬蒸鍍到玻璃基板上,再利用電子槍蒸鍍系統或射頻濺鍍系統將非晶矽鍍到玻璃基板上,以形成glass/Al/a-Si的樣品結構,之後再使用高溫爐將樣品做熱退火處理,分別討論不同熱退火溫度與時間對矽薄膜結晶的影響。 實驗中發現,在相同的熱退火時間12小時下,電子槍蒸鍍非晶矽製程熱退火溫度(500℃以上)要比射頻磁控濺鍍非晶矽製程熱退火溫度(400℃以上)高,才會有較明顯的矽結晶現象,主要結晶晶向皆為(111)。而在相同的熱退火溫度550℃下,電子槍蒸鍍非晶矽製程熱退火時間(30分鐘以上)要比射頻磁控濺鍍非晶矽製程熱退火時間(10分鐘以上)長,才會有較明顯的矽結晶現象。In recent years, low temperature polycrystalline silicon(LTPS) attracted much attention. In this work, we investigated the effect of different silicon deposition techniques, including e-beam evaporation and RF magnetron sputtering during the process of aluminum-induced crystallization(AIC) of a-Si. First, Al layers were deposited on glass substrates at room temperature by the resistive heator. Then a-Si layers were deposited on Al layers by e-beam evaporation or RF magnetron sputtering to make glass/Al/a-Si samples. The samples were annealed in a furnace and analyzed how different annealing temperature and time influenced a-Si crystallization. The results revealed that under the same annealing time (12 hours), the procedure of a-Si prepared by e-beam evaporation(>500℃) had higher annealing temperature than the procedure of a-Si prepared by RF magnetron sputtering(>400℃) to make crystalline silicon which had preferred orientation(111). Furthermore, at the same annealing temperature(550℃), the procedure of a-Si prepared by e-beam evaporation(>30 min) had longer annealing time than the procedure of a-Si prepared by RF magnetron sputtering(>10min) to make crystalline silicon.