本論文具體實現使用主動與被動光學元件整合至矽基微光學平台之光學連結技術,它可以作為板對板之光學連結應用。在架構上,矽基光連結發射端模組包含具單石化之矽基微45 度反射面、V型溝槽陣列、2.5 GHz高頻傳輸線、與金錫銲料,並利用混成構裝方式可利用被動對準之封裝技術,將面射型雷射、與多模態之光纖陣列以高精度的方式封裝整合。在1 × 1 cm2大小的發射端模組上具4 個信號傳輸通道,每通道速度可達2.5 Gbps;45 度微反射面深度為110 μm,其半導體製程誤差在6%之內;覆晶封裝製程之空間位移誤差於2 μm內,發射端模組之空間變異造成能量1 dB 損失時之光學準位容忍度為± 20 μm。光由面射型雷射發射經45 度微反射面後進入多模光纖的光耦合效率約為-6 dB,相鄰通道的串音雜訊準位在-50 dB以下。矽基光連結發射端模組在偏壓電流6 mA操作下,輸入2.5 Gbps (0.375Vp-p,PRBS 215-1)訊號之眼圖能通過OC-48 眼圖遮罩符合國際規範。In this thesis, an optical interconnect technology serving as a board to board interconnect is realized by assembling active and passive optical devices on a silicon-optical bench (SiOB). The transmitter module based on SiOB includes a monolithic integration of silicon-based 45° micro-reflector, V-groove arrays, high-frequency transmission lines of 2.5 GHz, and bonding pads with Au/Sn eutectic solder, as well as hybrid integration of VCSEL and fiber ribbon with compatibility to high precise passive alignment process. The size of transmitter module can be only 1 × 1 cm2 for the 4-channel interconnect. The depth of 45° micro-reflector reaches to 110 μm for providing -6 dB coupling efficiency from Vertical-Cavity Surface-Emitting Laser (VCSEL) to multi-mode fiber (MMF). Utilizing micro lithography and flip chip bonding processes, the process tolerance and VCSEL bonding accuracy are within 6 % and 2 μm, respectively, making sure the optical alignment tolerance within 20 μm and only 1 dB power variation. The performance of transmission lines of 2.5 GHz is experimentally demonstrated. The eye pattern was measured at circuit source 6 mA for 2.5Gbps PN-signal (15 bit).