無線充電技術的出現,為減少有限能源的消耗及避免傳統能量採集的不確定性,而裝置間通訊(Device-to-Device Communication, D2D)的興起,為增加頻譜的使用效率,本研究將綜合兩者的優點,於蜂巢式系統不同情況下,探討裝置間通訊的最佳吞吐量。 大部分同時訊息與能量傳輸的研究都專注於下行的架構,使用者可以獲取到資訊而這些無線裝置可以從基地台獲取能量,及一些沒有能量獲取裝置間通訊的研究,與蜂巢式細胞共用上行通道。上述的架構中,基地台可傳送較多能量對裝置充電且有較佳的抗干擾能力,及和下行通道比較起來,上行通道較沒有那麼擁擠的情況下,裝置也可以從下行獲取到主要使用者的訊號估計基地台到裝置傳送端的路徑損耗,控制上行所傳輸的功率。 在本篇論文中,吾人探討在只有共傳模式(Coexistence mode)以及包含唯獨主要者模式(CU-only mode)的情況下,附無線充電裝置間通訊於多天線的蜂巢式系統不同,而裝置可於下行獲取能量且在上行傳輸,並藉由設計天線權重、時間分配及功率控制,在保障細胞使用者時,求裝置之最佳吞吐量。 ;Due to the unpredictability of conventional energy harvesting and the shortage of radio spectrum resource, wireless power transfer (WPT) and device-to-device (D2D) communication have emerge as promising areas. The existing research of simultaneous wireless information and power transfer (SWIPT) only focus on the downlink scenario of cellular network where the devices can harvest the power from the transmitted signal and some studies with D2D are only pay attention to reuse the uplink channel. Based on the scenario from above references, base-station (BS) can transmit more power to charge the D2Ds and has more ability to against the D2Ds interference, and compared to the downlink channel, reuse the uplink channel which is less congested is a better choice, also D2D users can monitor the received power of downlink control signals and only estimate the path-loss between D2D transmitter and the BS. In this thesis, we focus on cellular networks with multiple antennas deployed underlying wireless-powered D2D which harvest power from downlink and transmit on uplink and optimize D2D sum throughput.