摘要: | 本論文總結博士修業期間所做的幾個專案;第一部份係探討超塑成型工件的製造分析,主要案例是協助解決漢翔波音737機身與機翼鄰接的特殊曲面鋁合金蒙皮成型問題。原始設計由於成型後造成厚薄不均的問題,經由詳細的厚度分析及可能形成的原因,提出了幾種縮小版本的測試模具理念進行驗證,發現縮小版的測試模具仍有相當的程度反映大型模具所會衍伸的問題,因此該方法極具參考性,另外也發現早期設計基於總延伸量相同周長的方法可能僅適用於壁面摩擦力極低的狀態下才能使用,即使有很好的脫模劑(氮化硼)仍無法解決鋁合金材料碰觸到模具後造成的黏滯性現象,後期發現增加預折彎量使更多的材料進入模具內,可有效的降低成型後的厚度差異性,而分切四部分的模具設計也證實是相當可行的做法,可在模具加工上省下不少費用,並且可以拆換左右預折彎深淺模具做更好的設計降低整副模具重新生產的成本,該方法可為後來製作類似產品時的參考。
第二部分係製作燃料電池、釩電池及其專屬的微感測器,由於燃料電池及釩電池均有眾多流道,入口與內部流道的分配數量相當多且複雜,例如一個40cell的燃料電池 每個cell有十個流道,但入口只有一個,總流道數量從一個大流道要分配到四百個小流道很容易有分配不均勻的問題。藉由設計其專屬的微感測器,我們可以將微感測器放於該流道上,進一步了解其電壓、電流及溫度等資訊,藉由微機電MEMS製程,我們將可以量測幾種不同物理量的感測器縮小放於一個小點上,藉由如此小的感測器以減少對燃料電池或釩電池堆的干擾。該感測器係利用微小布局的金線對溫度的敏感度進行流量偵測及溫度偵測,壓力則由電容量偵測而得,實際將該三合一微感測器(溫度、流量、壓力感測器)放於高溫燃料電池中,研究發現該方法確實可以最低限度的干擾燃料電池或釩電池的局部量測問題,所得到的結果也有助於回饋到電池堆的設計,對於未來做相關研究可以有很好的建議。 ;This PH.D. thesis have two parts, the first study focuses on the mold and manufacturing process, we are trying to research about the “airliner wing’s fairing cover” for aircraft manufacture industry. The aluminum alloy plates(SP5083) is used in this research, And there are several designs to reduce the forming distance manufacturing process, such as Two-Stage Superplastic Forming and Hot Draw Mechanical Preforming, etc. different model such as Two-cavity designed have same depth, enlarge the bottom of the V-shape preforming curvature radius, bottom of the V-shape preforming designed lower, etc. In this research, we found a new type of model, it is split mold practices, this is useful to cost down the mold price. The second parts are about the important physical parameters inside the vanadium redox flow battery (VRFB) is difficult to be measured accurately. They have critical influence on the vanadium redox battery performance and life cycle. Due to the uniformity and expendable nature of solution distribution, it will cause the phenomenon of uneven temperature distribution during the power generation process. As the vanadium pentoxide molecules are solid at normal temperature, once they are formed, the flow of vanadium electrolyte is affected severely. Particularly, the runner is even blocked, so that the heat carried away by the electrolyte flow is reduced, and inside the vanadium redox flow battery temperature rises continuously. However, the present bottleneck is outside, theory and simulation. The real information inside the vanadium redox flow battery cannot be obtained accurately and instantly. Therefore, according to the demand for internal in-situ microscopic diagnosis of vanadium redox flow battery, this work applied the micro-electro-mechanical systems (MEMS) technology to develop a flexible two-in-one (temperature and flow) micro sensor, which is embedded in the vanadium redox flow battery for in-situ microscopic sensing and diagnosis. |