晶圓表面上的微顆粒汙染是造成半導體元件製造良率下降的重要因素之一。清洗方法很多,一般利用超聲波震動(≦100kHz)所產生的空蝕作用(Cavitation)清洗所達到的效果較佳且破壞性較少,但當半導體元件精細度更高時使用超聲波清洗就容易有下列情況:(1)分布在表面上的線路遭空蝕氣泡破壞、(2)更小的隙縫、夾角處不易被清洗以及(3)不易清除更小的微顆粒,因此提出利用超高頻聲波/兆聲波(430kHz~980kHz)與改良自RCA SC1的低表面張力溶液作為清洗方法,其道理是利用提高頻率與調整溶液成分以獲得較小的空蝕氣泡、較強的聲場流(Acoustic Streaming)與降低黏滯邊界層(Viscous Boundary Layer)厚度。實驗利用田口法求得溫度、時間、輸入功率與頻率等參數對移除顆粒數量多寡與粒徑大小的影響,並進一步更改溶液配方來求得其他溶液與原配方溶液的差別。;Particulate surface contamination is one of the major causes of low yields in the semiconductor. It is effective at removing surface contaminants without inflicting damage in cavitation implosion of ultrasonic cleaning (≦100kHz). But there are some situations for the more exact semiconductor device is cleaning by ultrasonic waves to cause: (1) the patterns of circulation are destroyed by cavitation implosion; (2) the smaller aperture and angle will be cleaned difficultly and; (3) it’s hard to remove the particles on the wafer surface. Thus, it will be presented that this clean method uses high frequency/megasonic waves aids the chemical solution of low surface tension from improving RCA SC1. It will obtain smaller cavitation bubbles, stronger acoustic streaming and to decrease viscous boundary layer by increasing frequency and decreasing surface tension of chemical solution. The different parameters will be confirmed to the effect of particle removal efficiency and particle size by Taguchi method in the experimental process. And compare the different solution with common solution.